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1 Introduction

As the financial landscape reckons with the burgeoning risks of cybersecurity and environmental

concerns, our understanding of market dynamics undergoes a pivotal shift. Research by Choi et al.

(2020), Krueger et al. (2020), Engle et al. (2020), Bolton and Kacperczyk (2021), and Hsu et al.

(2022) on climate risk underscores a broader recognition of evolving risks that reshape market val-

uations and hedging strategies. Mirroring this evolution, cybersecurity, with a particular focus on

cybercrime, has surfaced as a significant economic challenge as documented by the U.S. Council

of Economic Advisers and the Center for Strategic and International Studies.1 In this context, con-

tributions by Kamiya et al. (2021), Eisenbach et al. (2022), Florackis et al. (2023), Jamilov et al.

(2023), and Jiang et al. (2024) have been crucial in elevating the discourse on cybersecurity risk,

placing it alongside climate risk as a key emergent factor in financial markets.

Building on these foundations, our paper aims to bridge the gap between recognizing these

evolving risks and devising practical hedging solutions. By introducing a cybercrime news shock

measure derived from a high-frequency news dataset, we explore effective hedging portfolios that

cater to the unique challenges posed by cyber threats. Furthermore, we delve into the determinants

of cybercrime hedging mechanisms, identifying the attributes that fortify firms’ defenses against

cybercrime risks. This approach not only addresses the immediate need for risk management

techniques but also contributes to a deeper understanding of how technological shifts are intricately

linked to financial market resilience in the digital era.

To test the impact of cybercrime on the cross-section of expected stock returns we first con-

struct a cybercrime news shock measure from a news dataset at the daily frequency, distributed

as the Refinitiv MarketPsych Index of cybercrime. This is a score derived from articles published

in media outlets including both news and social media. We then estimate monthly cybercrime

betas using rolling regressions of daily excess returns on innovations in the Refinitiv cybercrime

news index for U.S. stocks. Recognizing the issues arising from using sensitivities to a non-traded

1The U.S. Council of Economics Advisers has reported that malicious cyber activity cost the U.S. economy be-
tween $57 billion and $109 billion in 2016 (CEA, 2018). The Center for Strategic and International Studies (2018)
claims that almost 1% of global GDP, close to $600 billion, is lost to cybercrime each year.
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economic series in asset pricing tests, we construct a cybercrime tracking portfolio. Portfolios

formed on the basis of sensitivities to the tracking series show that stocks with positive sensitiv-

ity to the cybercrime tracking portfolio generate significantly lower next-month returns than those

from negative sensitivity stocks. The high-minus-low (HL) portfolio generates a highly statisti-

cally significant average excess return of -0.95% per month, and survives controlling for many

other factors. That is, stocks that offer positive returns when there are positive shocks to cyber-

crime command a high price and hence offer low expected returns. Stocks that vary negatively

with cybercrime shocks, conversely, earn a positive risk premium. We show that the return dif-

ferences are driven by cybercrime exposures rather than well-known stock characteristics or risk

factors by examining conditional bivariate sorts using classical pricing characteristics and both

firm and portfolio-level Fama-MacBeth regression tests.2 Our contribution here is in simplifying

the method used to estimate firm-level exposure to cybercrime compared with the literature that

largely relies upon complex text analysis of 10-K filings or analyst conference call transcripts. In

particular, our approach is easily generalizable to assets and jurisdictions where regulatory filings

and earnings call transcripts are less reliable or even simply not available.

Our second contribution is to identify four distinct factors that lead firms to have different

exposures to cybercrime news risk, particularly during times of higher cybercrime news coverage

in the media. First, we demonstrate a positive relationship between cybercrime beta and corporate

governance quality. Firms with fewer accruals and better governance scores – both relatively broad

proxies for the quality of corporate governance – or that devote more board-level resources to risk

management, informatics, and technology roles have higher cybercrime betas.

Second, we examine the influence of product market connections on firms’ cybercrime risk

exposure. Using a unique firm-level cybercrime news index together with firm peer groups defined

using Hoberg and Phillips (2016)’s product market similarity measure, our study shows that firms

2We control for size and book-to-market (Fama and French, 1992;1993), profitability and investment (Fama and
French, 2015; Hou et al., 2015), betas with the market factor, with market volatility (Ang et al., 2006; Campbell et al.,
2018) and with economic policy uncertainty (Brogaard and Detzel, 2015), momentum (Jegadeesh and Titman, 1993),
short-term reversal (Jegadeesh, 1990), illiquidity (Amihud, 2002), idiosyncratic volatility (Ang et al., 2006), and the
dispersion of analyst earnings forecasts (Diether et al., 2002).
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with more peers mentioned in recent cybercrime news stories are perceived as being more vulner-

able to systemic cyber threats. The pervasive nature of cybercrime means that the negative effects

of close competitors being attacked on a firm’s perceived vulnerability outweigh any competitive

advantages that the firm may have from seeing its competitors suffer from cybercrime.

Third, employing a text-based measure of firms’ digitization, we explore the relation between

firm digitization and cybercrime risk. The findings reveal a negative relation, indicating that less

digitized firms may be perceived as safer investments during periods of heightened cybercrime

concern. Our analysis contributes to the economic discourse by highlighting the need for firms to

balance digital innovation with cybersecurity measures, enriching the literature on the economics

of cybersecurity in the digital era.

Fourth, using a novel IT investment dataset, we explore the relationship between a firm’s

IT spending and its cybercrime beta, particularly during times of high cybercrime news coverage

in the media. Following Brynjolfsson and McElheran (2016), we take IT investment scaled by

assets as a proxy for the intensity of data-adoption practices in a firm. We show that firms that

are positively exposed to cybercrime risk (i.e. have low cybercime betas) tend to have high IT

budgets and high IT/Assets ratios. Using the data innovation framework of Gomes et al. (2023), we

argue that such companies are successfully adopting business models focused on the data economy

such that their high IT spending translates into rapid growth. But this success also makes them

both a specific target for cybercriminals and highly exposed to systematic problems caused by

cybercrime. Conversely, high cybercrime beta firms have low IT/Assets ratios. They are less

attractive to cyber criminals and less exposed to cyber risks. We show that in periods of heightened

cybercrime news, the IT/Assets ratio negatively correlates with firms’ cybercrime betas. At a finer

level of granularity, higher-scaled spending on IT hardware, software, communications, and (but

not services) is averse by investors when they are most sensitive to cybercrime.

Our third contribution is to examine the performance of a cybercrime hedging strategy based

on cybercrime betas which we then use to inform discussions of the insurance cost of cybercrime

risks. Using an event study approach, we show that across 112 major cybercrime incidents reported
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by the Center for Strategic and International Studies (CSIS), a strategy of taking a long position

in high cybercrime beta stocks and a short position in low cybercrime beta stocks generates an

average two-day post-event abnormal return of 0.37%. A back of the envelope calculation suggests

that market-wide, this portfolio generates gains of around $86 billion per year, comparable to the

$60-110 billion of annual losses to cyber crime estimated by the Council of Economic Advisors.

We then build upon our asset pricing tests and quantify an annualized ex-post cybercrime

risk premium of 5.28% which we use to provide a reference price for cyber risk insurance. Based

on another simple calculation, we demonstrate that the insurance industry could charge a market-

implied risk premium of between $42.1 and $141.31 billion per year, depending on coverage.

Given recent estimates that direct cybersecurity premiums total around just $3 billion, our figures

reveal substantial room for increased coverage of cyber risks.

Related Literature Our paper is related to several strands of the literature. We directly contribute

to a burgeoning literature that studies emerging and increasingly important risks such as climate

risk (Andersson et al., 2016; Engle et al., 2020; Huynh and Xia, 2021) and cyber risk (Kamiya et al.,

2021; Eisenbach et al., 2022; Florackis et al., 2023; Jamilov et al., 2023; Jiang et al., 2024) in the

economy. With the rapid growth of information technology in the economy, our study focuses on

the implications of the systematic risk from cybercrime. We add to this literature by showing that

stocks that positively covary with innovations in cybercrime news have lower expected returns. To

hedge against these unfavorable shifts, investors prefer holding stocks with higher covariance with

cybercrime and accept lower expected returns.

In the specific field of cyber risk, studies by Florackis et al. (2023), Jamilov et al. (2023), and

Jiang et al. (2024) are closely related to ours. Florackis et al. (2023) apply textual analysis tools to

10-K risk factor disclosures by firms to generate a firm-level measure of cybersecurity risk for all

US-listed firms. Jiang et al. (2024) apply several machine learning techniques to a broader set of

information - though including 10-K filings - to estimate the ex-ante probability that a firm will face

a cyberattack. Both papers then show that their cybersecurity measure is related to stock returns.

Related to this strand of research, Jamilov et al. (2023) build text-based measures of cybersecurity

5



risk from quarterly earnings calls, finding that exposure to cybersecurity risk affects profitability,

cash flow, stock returns, and tail risks in option markets both directly and via contagion effects.

As this makes clear, our evidence that cybercrime risk is priced by the stock market is not com-

pletely new to the literature. However, we believe that our simple approach has several strengths

relative to alternatives while retaining an ability to explain stock returns. While we try to resist

competing with these alternative approaches, we do demonstrate areas in which our cybercrime

beta measures add value. In particular, our measure outperforms in a horse race with the 10-K-

based cyber risk measure of Florackis et al. (2023), as discussed in section 3.2.

Perhaps most importantly, our paper extends beyond the asset pricing results. First, we ex-

amine what drives firms’ exposure to cybercrime risk. Our paper adds to the corporate governance

literature, highlighting that broad measures of corporate governance such as accruals relate to stock

returns. More specifically, we complement recent work by Ashraf (2022) and Kamiya et al. (2021)

by providing evidence that adding managerial resources to specific board level committees can

enhance risk oversight and reduce a firm’s exposure to cybercrime risks.

Second, our study enriches the literature by exploring risk transmission among product mar-

ket peers through spillovers. Grounded in the theoretical framework of Bloom et al. (2013) and

supported by empirical evidence from Tseng (2022), our analysis offers an insight into how tech-

nological advancements foster industry innovation yet concurrently unveil new systematic risks,

highlighting a complex interplay between technological progress and emerging vulnerabilities.

Third, our research contributes to understanding the economic effects of digital adoption on

firm growth by examining the inverse relationship between digitization and investor preferences

under cybercrime concerns. Unlike studies that highlight the growth benefits of digitization and

AI (Chen and Srinivasan, 2023; Babina et al., 2024), our findings suggest investors may favor less

digitized firms as a risk hedge due to the strong link between digitization and cyber vulnerabil-

ity. Similarly, we provide results consistent with theoretical models of the data-driven economy,

including Farboodi et al. (2019), Farboodi and Veldkamp (2021) and Gomes et al. (2023). The

latter, in particular, builds a model of the data economy that results in a cybercrime-driven innova-
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tion loop. Firms in the data economy protect themselves from cybercriminals by innovating more

but this only serves to make their data more enticing to criminals. Our empirical results comple-

ment this work, demonstrating the nature of the relation between IT investment by firms and their

exposure to cybercrime risks.

Additionally, we extend our asset pricing results into the fields of hedging and insurance.

Engle et al. (2020) develop a climate change risk index using news data from The Wall Street

Journal and construct related hedging portfolios. Similarly, we construct hedging portfolios for

cybercrime risk following Alekseev et al. (2022). We use this evidence to justify upper and lower

bounds on cybercrime insurance premiums chargeable in the United States, adding to the cyber

insurance literature reviewed by Koijen and Yogo (2022).

Finally, our study is related to a growing literature measuring the state of the economy using

business news (Baker et al., 2021; Kelly et al., 2021; Fisher et al., 2022; Bybee et al., 2023) and

information extracted from the news media to predict asset returns (Tetlock, 2007; Garcia, 2013;

Ke et al., 2019).3 We add to this literature by exploring the impact of cybercrime-related narratives

in public news.

The paper is organized as follows. Section 2 describes the key data used in the paper and ex-

plains how we calculate firm-level measures of exposure to cybercrime risks. Section 3 presents the

cross-sectional asset pricing results that demonstrate significant risk premium. Section 4 explores

factors that explain the different exposures of firms to cybercrime risks. Section 5 presents an eval-

uation of the hedging performance of a simple strategy around cybercrime events, and quantifies

the risk premium for the cybercrime risk factor. We use these to comment on the development

of cybercrime insurance markets. Section 6 summarizes our robustness checks while Section 7

concludes the paper.

3See also survey studies by Tetlock (2015) and Gentzkow et al. (2019).
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2 Data and Initial Analysis

2.1 Refinitiv cybercrime news index

We obtain the cybercrime news index data from Refinitiv MarketPsych. Refinitiv derives news

feeds of newly published content from approximately 40,000 internet news sites. More specifically,

the news or social media content of information is assembled via Refinitiv crawls through hundreds

of financial news sites, including, for example, The New York Times, The Wall Street Journal, The

Financial Times, Seeking Alpha and many other sources that financial professionals widely read.

In contrast to the traditional method of lexical analysis used in textual study, the technology used

to create Refinitiv overcomes several shortcomings of the conventional approach broadly used in

extant finance and economics studies (detailed information can be found in Peterson (2016)).

The Refinitiv cybercrime news data used in our empirical study calculates the intensity of

cybercrime-related news narratives reported to the public. The index is unipolar and ranges from

zero to one.4 The higher the number, the more proportional references to cybercrime narratives in

news articles. Specifically, the Refinitiv cyberCrime score is calculated by counting all cybercrime-

related news references scaled by the total news references, named Buzz within Refinitiv. Figure 1

displays the cybercrime news index score at a daily frequency from 1998 to 2021. There are peaks

on particular days for the most severe cyber incidents in the US. For example, the early notorious

cyber incident happened on February 12, 2000, in which Michael Calce hacked multiple com-

mercial websites; recent famous data breaches in September 2017 for Equifax and May 2021 for

Colonial Pipeline. Additionally, the cybercrime news score varies at a daily frequency. It steadily

increased from 1998 to 2021, consistent with the advancement of the internet and increasing con-

cern about cybercrime in data implementations in the economy.

Hence, the Refinitiv cyberCrime is a fraction of total news references and scrutinizes only

4There are rare cases of negative values due to Buzz being low, and the references to those indexes are “Negated”.
For example, references about “anti-cybercrime measures” or “fighting cybercrime” will cause a negative value. The
words “anti” and “fighting” allow companies whose business prevents or stops cybercrime not to have positive scores.
However, only 30 out of 8306 days have negative values, less than 0.4% sample size. Therefore, our results are not
affected by excluding days with negative values.
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news stories related to cybercrime events. Based on the Refinitiv data user guide, we create the

measure of cybercrime news coverage (CCB) by multiplying the cybercrime score and Buzz.

CCBt = cybercrimet ×Buzzt (1)

The CCBt is calculated at a daily frequency as the measure of the intensity of cybercrime-

related narratives covered by news media in the US.5 Intuitively, the higher the value of CCBt , the

more discussion about cybercrime is reported in the news media, raising investors’ awareness of

cybercrime risk by reading the cybercrime news narratives.

2.2 Cybercrime news shocks

The first column in Table 1 shows that the CCB series is quite persistent, with an AR(1) coefficient

of 0.68. Nevertheless, we reject at 1% level the null hypothesis that CCB has a unit root. To further

investigate the potential correlation between the cybercrime news measure and other benchmark

economic risk variables, the second column in Table 1 shows the results by adding ∆V IX and

∆EPU as additional controls in the AR(6) model. Indeed, our cybercrime news measure is not

related to ∆V IX and ∆EPU .6

We apply an AR(6) model to extract cybercrime news innovations which we use as our mea-

sure of cybercrime news shock (CCA).7 We first estimate

CCBt = a+bi

6

∑
i=1

CCBt−i + ε
CCB
t (2)

using a backward-looking one-year rolling window of daily CCB data. We then standardize εCCB
t

5The daily measures from Refinitiv are calculated from newsfeeds before 3:30 PM ET each day. Please refer to
detailed information about the Refinitiv news sources in the book by Peterson (2016). Additionally, this is a common
feature of using news or social media data in textual analysis. Please see the survey studies about textual analysis in
finance by Tetlock (2015), Loughran and McDonald (2016), and Loughran and McDonald (2020).

6The EPU is the economic policy uncertainty index developed by Baker et al. (2016).
7See related studies by Brogaard and Detzel (2015) and Engle et al. (2020). We use an AR(6) model as this

reduces the autocorrelation issue, controls for potential day-of-the-week effect, and results in standardised innovations
that pass both ADF and KPSS stationarity tests in each rolling window.
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as follows:

CCAt =
εCCB

t − ε̄CCB
t

σ
εCCB

t

(3)

where ε̄CCB
t is the mean of the cybercrime news innovation in each rolling regression sample and

σ
εCCB

t
is its standard deviation. CCAt is our measure of cybercrime news shocks for the one year

leading up to time t. This approach ensures that we do not include any future information in the

following tests.8 The sample starts on January 1st, 1998, so our first rolling window runs from this

date until December 31st, 1998.

2.3 Cybercrime exposures

Cybercrime exposures of individual stocks are obtained from regressions of daily excess stock

returns on these cybercrime news shocks plus the market excess return:

Ri,t = αi +βMKT,iRMKT,t +βCCA,iCCAt + εi,t (4)

where βCCA is the estimated cybercrime beta. The sample matches that used to obtain the cyber-

crime news shock. That is, each cybercrime sensitivity is estimated using the past year of daily

returns and cybercrime innovations. We only control for the market factor since Liu et al. (2021)

argue that the CAPM outperforms more complicated models in testing zero alphas from a mar-

ket efficiency perspective. Nevertheless, we control for many benchmark factors in subsequent

portfolio sorting analyses.9

We examine all common stocks (share codes 10 and 11) traded on the NYSE, Amex, and

Nasdaq exchanges from January 1998 through December 2021. The daily and monthly return data

are from the CRSP, and we adjust stock returns for delisting effects following Shumway (1997).

8This standardization also benefits the following beta estimation will be more comparable since the cybercrime
news coverage is different as technological progress changes dramatically in the sample period (from 1998 to 2021).
For example, Figure 1 shows that samples after 2005 have relatively more cybercrime news stories.

9The backward-looking rolling regression with the CAPM model is also suggested by Barroso et al. (2021) to
capture the conditional relationship between the state variable and the tested variables. We also estimate the βCCA,i
using Fama-French three factor and Carhart models but our conclusions are unaffected.
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Following Amihud (2002) and many other studies, we eliminate stocks with a price per share less

than $5. We require at least 60 trading days for a stock to be included in the analysis.

We then move the sample forward one calendar month, re-estimate both the cybercrime in-

novations series and the firm-level exposures to cybercrime. We continue until the sample is ex-

hausted in December 2021. This rolling-window approach means that all estimates are based on

information available to investors in real-time with no look-ahead bias. It also accounts for the

increasing level and volatility of the Refinitiv cybercrime index over our sample. Standardizing

the innovations using full-sample data as done by Jamilov et al. (2023) is potentially problematic

given that the daily change in the Refinitiv index has a standard deviation of 0.02% in 1998 but

0.13% in 2021.

Stocks with a negative βCCA,i suffer poor returns when there are positive innovations in the

cybercrime news coverage (CCB). Stocks with positive sensitivities to cybercrime news shock

are hedging stocks that offer insurance against positive shocks in cybercrime news. When the

public’s awareness of cybercrime increases from news media reports, these stocks offer positive

returns. Such hedging stocks should command a high price and hence offer a low-risk premium

if investors are concerned about cybercrime negatively shifting future economic conditions or the

investment opportunity set. Conversely, stocks with negative βCCA,i are more risky and exposed to

cyber-related crimes, so those should command a positive risk premium.

3 Cross-Sectional Asset Pricing Results

Non-traded factors – including cybercrime news – which capture fundamental risks in the econ-

omy ought to explain the cross-section of expected returns. However, measured changes in these

factors contain measurement errors. To reduce factor noise, factor-mimicking or tracking port-

folios containing traded assets that represent the underlying non-traded factors are widely used

(Huberman et al., 1987; Breeden et al., 1989; Ang et al., 2006; Giglio and Xiu, 2021). We follow

the time-series approach of Lamont (2001) and regress the non-traded cybercrime series on con-
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temporaneous returns of traded assets (Zt), using the fitted values from this regression as a traded

asset-based proxy for cybercrime for each one-year long rolling regression window:

CCAt = c+b′Zt +ut (5)

The traded assets we use are five portfolios sorted according to sensitivities to the cybercrime

news shock estimated as described in the previous section. All portfolios are value-weighted and

we use NYSE stock break-points throughout. Because the traded assets are excess returns, the

coefficients in the vector b can be interpreted as weights in the zero-cost portfolio. For each

regression window, we construct the daily tracking factor return factor, b′Zt , which we denote

TCCAt .

TCCAt = b′Zt (6)

The tracking portfolio TCCA contains the portfolio of asset returns maximally correlated

with realized innovations in cybercrime news coverage using a set of basis assets with different

exposures to cybercrime news shock (βCCA). By virtue of this mimicking factor, the primary

advantage of using TCCA in the following analysis to measure the aggregate cybercrime risk is

that we have a good approximation of innovations in cybercrime news, and allows us to alleviate

the issues caused by noise in the news data.

Figure 2 presents the average daily Pearson correlation between CCAt and the cybercrime

news shock tracking portfolio returns is around 0.54 from the 276 regression windows. The corre-

lation ranges from 0.26 to 0.72. Figure 3 displays time-varying weights (b) for the five portfolios.

On average, the weights of portfolio 5 are always positive and the average weight on portfolio 5

is close to +0.95. In the meantime, the weights of portfolio 1 are always negative and the average

weight on portfolio 1 is close to -0.86. Additionally, the average weights on each portfolio are

also monotonically increasing. Together, these results suggest that the tracking portfolio indeed

efficiently tracks innovations in cybercrime news (CCA) in a manner consistent with expectations.
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3.1 Tracking factor performance

We next estimate time-varying stock-level sensitivities to the cybercrime news shock tracking fac-

tor (TCCAt), rather than to the non-traded cybercrime news shock proxy itself.

Ri,t = αi +βMKT,iRMKT,t +βTCCA,iTCCAt + εi,t (7)

Rolling one-year regressions of returns on the market excess return and the TCCA generate

cybercrime tracking betas (denoted βTCCA,i) that are used to allocate stocks to one of five portfolios.

We then examine the returns on these portfolios in the following month. The results are reported in

panel A of Table 2. As we move from Portfolio 1 to Portfolio 5, value-weighted average portfolio

betas rise from -0.66 to +0.81 in a relatively symmetric pattern. Next-month average excess returns

decrease monotonically from 1.08% to 0.14% per month. The returns of individual stocks in

Portfolio 1 correlate negatively with shocks to cybercrime news mimicked by TCCA, and so risk-

averse investors require higher expected returns to hold these stocks. Conversely, as the stocks

in Portfolio 5 correlate positively with increased shocks in cybercrime, they are viewed as hedge

stocks that perform well in times of increased risk related to cybercrime. Hence, investors pay

higher prices for these stocks and willingly accept lower returns.

The average return difference between the highest and lowest beta portfolios is -0.95% per

month with a Newey and West (1987) t-statistic of -2.93. The alpha analysis reported in columns

3-6 show that irrespective of the factor model used, monthly alphas from Portfolio 1 are around

0.4% and statistically significant, falling to around -0.60% for Portfolio 5 (again with large t-

statistics). The high-minus-low portfolio return alphas are similar to the raw return and are again

statistically significant.

This significantly negative cybercrime premium is consistent with the intertemporal capital as-

set pricing model of Merton (1973). An unexpected increase in cybercrime (and cybercrime news)

adversely affects future investment and consumption opportunities. Investors prefer to hold stocks

whose returns increase upon such unfavorable events and thus hedge their exposures to cybercrime.
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That is, they compensate for reduced consumption and weakened future investment opportunities

by holding stocks that positively correlate with cybercrime. This intertemporal hedging demand

implies that investors are willing to pay higher prices and accept lower returns for stocks with

higher cybercrime betas.

It is noticeable from Table 2 that irrespective of the pricing factor model used, the majority

of the negative alpha in the high-minus-low portfolio comes from the high cybercrime beta leg

(Portfolio 5). This proportion is never below 60% and in the case of the Fama-French five-factor

model, is as high as 64%. Stocks in portfolio 5 are the hedges that tend to offer high payoffs when

cybercrime news increases and these stocks offer typically low expected returns as a result of this

hedge characteristic.

We next examine the relation between cybercrime sensitivities and next-month stock returns

controlling for well-known cross-sectional return predictors. We perform bivariate portfolio sorts

on the cybercrime tracking beta (βTCCA) in combination with the market capitalization (SIZE),

book-to-market ratio (BM), operating profitability (OP), investment (I/A), market beta (βMKT ),

market volatility beta (βV IX ), economic policy uncertainty beta (βEPU ), momentum (MOM), short-

term reversal (ST ), illiquidity (ILLIQ), idiosyncratic volatility (IVOL), and analyst dispersion

(DISP).10 We first form five portfolios based on the predictor variables. Then, within each pre-

dictor portfolio, we sort stocks into five portfolios based on the cybercrime beta (βTCCA) so that

portfolio 1 (portfolio 5) contains stocks with the lowest (highest) cybercrime beta values. We then

average the next month’s value-weighted portfolio returns across the five predictor portfolios for

each of the five cybercrime beta portfolios. This creates a set of five portfolios with very similar

levels of the predictor variable but which differ by cybercrime beta.

We report value-weighted portfolio results from these conditional bivariate sorts in Panel B of

Table 2. The first column shows that after controlling for size, the α8 controlling FF five-factors,

momentum, short-term and long-term reversal factors tends to fall as the cybercrime tracking port-

10Financial variables are obtained from the merged CRSP-Compustat database. Analysts’ earnings forecasts come
from the Institutional Brokers’ Estimate System (I/B/E/S) data set. Benchmark pricing factors and testing portfolios
are downloaded from related data libraries.
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folio beta increases from portfolio 1 to 5. The high-minus-low portfolio alpha is about -0.7% per

month with a Newey-West t-statistic in excess of 2.3. Subsequent columns of Panel B, Table 2

show a very similar pattern and in most cases, the high-minus-low alpha is even greater than that

seen when controlling for size. Statistical significance is strong for all predictors.

Our key findings are confirmed when we apply the alternative technology of Fama and Mac-

Beth regressions (1973) of the realized excess return of stock i in month t + 1 on the cybercrime

tracking portfolio beta of stock i in month t and the collection of stock-specific control variables

observable at time t considered in Panel B of Table 2. These cross-sectional regressions are esti-

mated monthly from January 1999 to December 2021.

The univariate regression results reported in the first column of the left panel in Table 3 in-

dicate a negative and statistically significant relation between the cybercrime beta and the cross-

section of future stock returns. The average slope is -0.46 and highly significant. Were a stock to

move from Portfolio 1 to Portfolio 5, all other things equal the expected return of that stock would

decrease by a substantial 0.68% per month [-0.46×(0.66-(-0.81))]. The remaining columns,(2)-(4),

show that while adding several fundamental control factors reduces the magnitude of this coeffi-

cient, it remains sizeable and statistically significant.

Moreover, we further explore the role of non-tech firms in driving the observed negative re-

turn predictability. Drawing from the study by Chen and Srinivasan (2023), we differentiate firms

into tech or non-tech industries based on the SIC, NAICS, and GICS codes. Specifically, a dummy

variable is assigned the value one when firms are in the defined non-tech industry and zero other-

wise. We expect that non-tech firms, traditionally less dependent on digitalization, might exhibit a

stronger negative relationship between cybercrime beta and future stock returns. This is confirmed

by the results reported in column (5), where the interaction term (Dnontech×βTCCA) reflecting non-

tech firms’ cybercrime beta is significantly negative. Column (6) reaffirms these results, even when

accounting for potential industry effects, suggesting that non-tech firms’ inherent characteristics,

notably their lower reliance on digitization, play a pivotal role in shaping the impact of cyber-

crime betas on stock returns. These insights lay the groundwork for an in-depth exploration of the
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relationship between firm digitization and cybercrime beta in section 4.4.

In our final set of asset pricing tests, we investigate whether cybercrime tracking betas have

the same predictive power for the cross-section of equity portfolios. We obtain portfolio daily

return data on 49 industry portfolios and three sets of portfolios from sorts based on size and

book-to-market, size and investment, and size and profitability from Kenneth French’s data library.

These 349 portfolios are widely used in the literature since they generate significant cross-sectional

differences in portfolio expected returns (Bali et al., 2017).

We estimate rolling cybercrime betas for each portfolio controlling for Fama-French five fac-

tors.11 Univariate portfolio sorting results are presented in Table 4. Portfolios sorted by βTCCA

provide results consistent with those from individual stocks. As the average cybercrime tracking

beta increases from portfolio 1 to 5 one-month ahead expected returns decrease monotonically. The

H-L portfolio generates expected returns of -0.3%. The difference in risk-adjusted returns (α) be-

tween high and low βTCCA portfolios is significantly negative, and the magnitude is about −0.25%

and consistent across different pricing models. Again, we note that the alpha is concentrated in the

high beta portfolio.

We conclude that the cybercrime tracking beta is priced not only in the cross-section of in-

dividual stocks but also in the cross-section of equity portfolios. One can also infer that hedging

against cybercrime can be implemented via portfolios rather than diving into the entire stock uni-

verse, which is relatively costly.

3.2 Discussion

In summary, we have presented results demonstrating that firm-level sensitivity to innovations in

cybercrime news are robustly priced in the cross-section of US equity returns. That cybercrime

risk is priced is not new to the literature. For example, Florackis et al. (2023) and Jiang et al.

(2024) both report similar findings. However, we believe that our approach to measuring firm-

level exposures has several benefits.

11The results are not sensitive to use the other models for our beta estimation.
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First, both papers apply sophisticated text analysis tools to extract firm-level measures of cy-

bersecurity exposures. Florackis et al. (2023) consider 10-K risk factor disclosures while Jiang

et al. (2024) consider a broader set of information - including 10-K filings - to estimate the ex-ante

probability that a firm will face a cyberattack. Relatedly, Jamilov et al. (2023) build text-based

measures of cybersecurity risk from quarterly earnings calls. In contrast, we estimate firm-level

cybercrime exposures from simple regressions of returns on news innovations. The simplicity of

our approach has several advantages, not least the ability to be applied in jurisdictions with less rig-

orous regulatory filing requirements and/or less informative disclosures through analyst calls than

in the United States. We provide reassurance that the choice of cybercrime measure is not critical

by generating very similar findings using publicly-available Google search data in the robustness

analysis below. The simplicity of our approach does not mean inferiority. Our cybercrime track-

ing beta outperforms a horse race with the yearly firm-level 10-K cyber risk exposure measure of

Florackis et al. (2023) in hedging significant cyber incidents. The results provided in Appendix B,

demonstrate that our measure has a clear edge in pricing returns in cross-section based on investors’

demand for hedging cybercrime risk.

Second, these three papers each build firm-specific measures of exposure to cybersecurity

risk. As such, they naturally conflate idiosyncratic and systematic cybersecurity risks. Our analysis

differs since we estimate firms’ sensitivities to a common measure of cybercrime reported in news

articles. While we acknowledge that there are a variety of measures of cybercrime risk from which

to choose, having made this selection we follow standard and transparent techniques to derive

firm-specific sensitivities to cybercrime risk.

Our approach has some other advantages. Florackis et al. (2023) use data beginning in 2007,

at which time fewer than 30% of U.S. firms make cybersecurity-risk disclosures in their 10-K

filings. This proportion jumps from 39% in 2010 to over 60% in 2012 following specific guidance

from the SEC in 2011. Whether firms’ managers chose to disclose the true cyber-risks they faced

appears to have been at least partially driven by regulatory requirements for a large part of their

sample. Of course, there is also the question of whether firms’ managers can accurately assess
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the cyber-risks that they face given the novelty of this particular risk and the fast rate of change of

both vulnerabilities to cybercrime and the scale of the activities of cyber-criminals. In particular,

vulnerabilities due to supply chain linkages may be important. Managers of a particular firm

may not feel it to be much at risk from cybercrime, but performance may well be impacted by

cybercrime attacks either up- or down-steam in its supply chain. Rather than using managers’

disclosed assessments of own firm and spillover risks, we rely on the market’s assessments of

cybercrime risks as evidenced by stock returns.

Perhaps most importantly, our paper differs in terms of the emphasis we place on firms that

offer a hedge for cybercrime, rather than focusing on the positive risk premium demanded by

investors to hold positions in stocks most vulnerable to cyber attack. The key measure in Jiang et al.

(2024) is an ex ante estimated cyber attack probability for the following year, naturally bounded at

zero. Florackis et al. (2023) compute a cybersecurity risk index for each firm which takes the value

zero up to at least the 25th percentile of their sample. In these two applications, firms cannot act as

hedges for cybercrime risks, they can only be said to be at less risk than other firms. In our paper,

the distribution of estimated exposures to cybercrime risk is reasonably symmetrically distributed

around zero. While we find a significant positive Fama-French five-factor alpha for the portfolio

of firms with the most negative sensitivities to innovations in cybercrime news, we find large and

very statistically significant negative alphas for the portfolios of firms with hedging properties. We

note that this is also true – though less emphasised – in the existing literature. Jiang et al. (2024),

for example, note that most of their alpha “comes from the bottom decile portfolio, where stocks

with lowest cyber risk reside.”12

3.3 Next steps

Having demonstrated the power of our simple measure to explain the cross-section of US stock

returns, and placed these in the context of related work also addressing asset pricing effects of

12Florackis et al. (2023) consistently find significant underperformance of their low cyber-risk portfolio with a
cybersecurity risk index of zero. Their high cyber-risk portfolio (index = 0.46) only commands a positive alpha in a
value-weighted setting.
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cyber risks, our paper now reaches a fork.

In the following section we take the asset pricing results as given and move on to ask what

factors drive firms’ differential exposure to news innovations about cybercrime. In doing so, we

explore how strong corporate governance, product similarity, and financial decisions related to

digital adoption and IT investments impact a firm’s cybercrime risk exposure and affect asset pric-

ing. Our aim is to gain a clear understanding of these factors, examining their contributions to the

context of investor valuation regarding firms’ cyber risk exposure in financial markets.

In Section 5, we return to the asset pricing results and travel in a different direction, using them

to construct and evaluate the performance of an insurance-like hedging strategy across a large set of

cyber events affecting the US economy. Having demonstrated the encouraging performance of the

hedging portfolio, we extend the asset pricing results further to estimate an ex-post cybercrime risk

premium and use this to place indicative upper and lower bounds on the size of the market-wide

premium insurers could charge.

4 Attributes of Cybercrime Hedging Stocks

A fundamental question arises: What drives investor evaluations of firms’ exposure to cybercrime

risk. Specifically, what are the determinants of cybercrime betas? Focusing on the nature of

cybercrimes and the strategies for insuring against them, this section emphasizes the efficacy of

corporate governance and the nuances of organizational strategies, which include product devel-

opment, digitalization, and IT infrastructure investment, especially during periods of heightened

cybercrime concern in the market. We focus on four dimensions of firm decisions that potentially

contribute to the variations in cybercrime beta.

First, building on papers including Johnson et al. (2000) and Mitton (2002) which note the out-

performance of stocks with better corporate governance in the face of negative economic shocks,

we examine the link between corporate governance quality and cybercrime betas. We find that

a broad brush proxy for corporate governance quality (accruals), a more specific human capital
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measure of board level risk management resources, and higher ESG-based governance scores each

relate as expected to cybercrime betas.

Second, we combine the methodological framework of Hoberg and Phillips (2016) regarding

product similarity with firm-level cybercrime news data to assess the implications of cybercrime

spillovers among peer groups of firms identified by product similarities. Our findings reveal that in-

vestors tend to ascribe higher valuations to firms with less product market overlap with cybercrime

news-reported peers over a one-year rolling window.

Third, constructing a novel measure of a firm’s digitization, we explore its dual impact on a

firm’s digital activity and cyber vulnerability. While digitization fosters growth for firms, it simul-

taneously heightens their exposure to cyber threats. Our analysis contributes to understanding the

balance firms must strike between leveraging digital innovations for economic gains and managing

the associated cyber risks, offering insights into the economics of cybersecurity in the digital age.

Finally, we build upon the theoretical framework of Gomes et al. (2023) on the data-driven

economy, focusing on the ‘innovation loop’ within data-centric firms. Firms focused on digital

innovation, report elevated digitization-related expenditures and high IT investment, amplifying

their exposure to cyber risks. Conversely, firms with a less pronounced focus on data, demonstrated

by lower relative IT spending, tend to exhibit diminished cyber risk. Our empirical analysis of

firms’ IT investment data substantiates these dynamics, providing evidence that these factors are

important in shaping investors’ assessments of cybercrime risk exposures.

4.1 Periods of heightened cybercrime concern

We utilize the Refinitiv MarketPsych cybercrime news index to define periods of significant mar-

ket concern regarding cybercrime (HCCR) through a moving average crossover approach.13 This

method allows for a nuanced identification of times when cybercrime news intensity surpasses

13This moving average crossover technique parallels the study by Bybee et al. (2023), which constructs narrative
shocks by selecting specific windows that capture heightened attention to narratives. Additionally, Huynh and Xia
(2021) employ a similar empirical approach to explore the factors influencing investor valuation of bonds during
periods of heightened climate change news risk.
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historical norms, signaling increased market attentiveness to cybercrime issues. To do this, we

calculate the average value of cybercrime news coverage for each month and compare it to the

trailing 90-day moving average. A dummy variable is assigned a value of one to denote months

where the average cybercrime news coverage exceeds this 90-day benchmark. This method allows

us to differentiate between periods of intense cybercrime news coverage and comparatively quieter

times. Such a distinction is crucial in our investigation into the key determinants that influence

investor valuation of firms, particularly during periods when intensified reporting on cybercrime

significantly raises investor awareness and impacts their response to the associated risks.

Figure 4 presents a heatmap illustrating the disparity between the monthly average of cy-

bercrime news coverage and the preceding 90-day moving average. The intensity of the color

corresponds to the magnitude of this difference; a warmer color indicates a greater disparity in

cybercrime news coverage between the current month and the past three months. Notably, certain

months correlate with significant cyber incidents.14 Consequently, given the escalating concerns

about cybercrime as reflected in news media, the following sections delve into the impact of in-

tensified cybercrime news coverage on investor valuation, particularly in terms of hedging against

prospective cybercrime risks.

4.2 Corporate governance and cybercrime

In a speech on “Boards of Directors, Corporate Governance and Cyber-Risks: Sharpening the

Focus” given on June 10, 2014, Commissioner Luis Aguilar of the Securities and Exchange Com-

mission (SEC) emphasized the role of effective boards of directors with oversight for the rising risk

of cyberattacks, and that strengthened corporate governance can offer benefits to stakeholders and

the integrity of the capital market.15 This speech motivates us to explore whether good corporate

governance explains why hedging stocks outperform following cyberattacks.

14For instance, February 2000 was marked by multiple online hacking cases orchestrated by Michael Calce; June
2011 witnessed a cyberattack on CITI Bank; September 2017 was notable for the major data breach at Equifax;
December 2020 saw a data breach within the US federal government; and the most recent incident in our dataset, the
Colonial Pipeline ransomware attack, occurred in May 2021.

15The article is available at https://www.sec.gov/news/speech/2014-spch061014laa
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We use three measures of the quality of corporate governance. Our first measure, accruals,

is commonly used as a proxy for general governance quality in the corporate finance literature

(Sloan, 1996; Larcker and Richardson, 2004; Pedersen et al., 2021). The lower the accruals are,

the better corporate governance is deemed to be. In our statistical analysis, we therefore take the

negative of accruals such that a higher value suggests better governance.

Columns (1) and (2) in Table 5 demonstrate a highly statistically significant positive relation

between the interaction term HCCR×Accruals and βTCCA. This indicates that strong corporate

governance, marked by lower accruals, effectively reduces a firm’s cybercrime risk, thereby en-

hancing its stock value in times of elevated cybercrime news.16

Our second measure is the Governance component of companies’ ESG scores, sourced from

Refinitiv Workspace and spanning the years 2002 to 2021. We categorize firms into low, medium,

and high Governance groups based on the tercile distribution of annual data.17

The findings, as shown in Columns (3) and (4) of Table 5, align with the patterns observed

in columns (1) and (2), demonstrating a positive link between governance strength and cybercrime

beta. Specifically, an elevation in governance to a higher category correlates with an approximate

2.5% increase in cybercrime beta, relative to the within-firm standard deviation.

Concerned that missing Governance scores in the early part of the sample affect our results,

we draw on the work of Lee et al. (2015) which underscores the significant correlation between

a firm’s financial fundamentals and those of its industry peers. Specifically, we replace missing

Governance scores with the median score within each firm’s Standard Industrial Classification

(SIC) industry for each year. The results, detailed in Column (5) are consistent with those obtained

from the smaller sample. Enhanced governance mitigates cybercrime risk across firms.

Accruals and the general Governance score are both relatively coarse measures of corporate

governance quality that do not have a specific cybercrime or risk focus. Therefore, our third mea-

16This general result parallels the finding that socially responsible firms face less credit risk and recover faster (Lins
et al., 2017; Albuquerque et al., 2019).

17The data coverage is uneven, particularly before 2015, with fewer firms included in earlier years. Using cate-
gorized variables helps address this imbalance, ensuring that the regression model remains robust across years with
varying amounts of data.
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sure of corporate governance is the number of experts on firms’ boards who are experienced in

risk management or knowledgeable on information, technology, and/or cyber-related issues. This

human capital-focused measure echoes Aguilar (2014). It is also in line with Kamiya et al. (2021)

and Ashraf (2022) who stress that improving corporate governance by having more risk manage-

ment committee members or information security experts on the board can significantly enhance

cyber risk oversight of the firm and reduce its risk exposure to cybercrime.

For the human capital measure, we obtain board committee members’ data from BoardEx,

and identify members with roles related to cybercrime risk management by manually scrutiniz-

ing each member’s committee roles for keywords related to risk management, corporate gover-

nance, or informatics. Specifically, we select committee names including words with “risk”(R),

“security”(S), “governance”(G), “operation”(O), “information”(I),“technology”(T), “data”(D) and

“cyber”(C). To focus on more operational risk management and information-related expertise, we

exclude committees that mention financial risks, such as credit risk, audit risk, and names that are

environment-related. With the relevant RSGOITDC committees identified, we count the number

of distinct members.18

We examine the relationship between cybercrime beta and corporate governance measures,

focusing on periods with high cybercrime news coverage. Essentially, we regress βTCCA on the in-

teraction term between HCCR defined above and lagged measures of corporate governance, includ-

ing accruals or the intensity of human capital investment indicated by the number of RSGOITDC

experts. Regressions also include a set of stock-level control variables and key firm financial met-

rics such as leverage ratio and return on assets (ROA).19 All regressors are standardized to have

zero mean and unit standard deviation for consistency.

The results for RSGOITDC are presented in columns (6) and (7) of Table 5. We consider

a simple count of RSGOITDC committee members, denoted by ‘Expert’. The interaction term

18We take the logarithm for the number of experts plus one to reduce skewness. However, the results remain
unchanged without taking logarithm.

19All corporate governance measures and control variables are lagged for one fiscal year or one period to avoid any
look-ahead bias.
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HCCR×Expert is positive and significant at the 1% level.20

The economic magnitudes of these effects are also meaningful. In our quantification of eco-

nomic impacts, we consider the fixed effects of ‘cybercrime beta,’ which, though present, are rela-

tively modest, alongside the more significant effects associated with ‘Expert’. The fixed effects are

stronger for the experts headcount, meaning that according to Liu and Winegar (2023) and Mitton

(2024) would ought not overstate the magnitude of a “reasonable” shock to the key variable and

instead consider an increase of just two experts, equivalent to one within-firm standard deviation.

This results in an increase in the cybercrime beta of 0.02, or 4.3% of its within-firm standard devia-

tion. However, as a policy recommendation for firms looking to improve their stock’s sensitivity to

cybercrime shocks, we consider the addition of a handful of experts to the important management

committees of firms to be feasible and so view both of these estimates of the economic magnitudes

to be conservative.

These findings highlight the crucial role of strategic human capital investment in fortifying

corporate governance, risk, and informatics management, thereby effectively reducing a firm’s

vulnerability to cybercrime risks in periods of intensified cybercrime news reporting.

In sum, a positive relationship exists between cybercrime beta and corporate governance,

especially when corporate governance is proxied by the number of experts knowledgeable in risk

oversight and informatics in top management. Fostering better corporate governance by placing

experts in top management roles helps firms shield themselves from cybercrime risks. The results

of our study shed light on related work by Kamiya et al. (2021) and Ashraf (2022), contributing

a new insight into the impact of corporate governance on cyber-related incidents. Put simply,

effective investment in human capital expertise can help mitigate the effects of cyber attacks.

20We also consider the ratio of RSGOITDC experts to total committee members, ‘Expert%’, and its interaction
with HCCR. The results are essentially unchanged from those reported for the simple count of experts.

24



4.3 Peer firms, product market, and cybercrime

Investors actively seek information from firms within the same industry, particularly those with

fundamental similarities across various dimensions. This behavior, underscored by the significant

cross-sectional return predictability, suggests a firm’s responses to common market shocks are

closely aligned with its peer firms (Lee et al., 2015). In a related vein, our investigation considers

the concept of economic affinity and its impact on asset pricing, focusing specifically on how

product market connections influence firms’ cybercrime risk exposure.21

Leveraging a unique firm-level cybercrime news index, we investigate the impact of peer

firms’ cybercrime news on investor valuation concerning systematic cybercrime risk. For each

firm, we pinpoint peer firms based on product similarity. We then identify the intensity of cyber-

crime news relating to that peer group. We posit that firms with fewer peers mentioned in current

cybercrime news articles are perceived by investors to have lower risk. During times of heightened

concern over cybercrime, such firms are considered to be safer havens by investors which, in turn,

could bolster their market valuation.

We use Hoberg and Phillips (2016)’s dynamic text-based measure to identify industry peers.22

Each year, they extract the product descriptions from the 10-K filings of all firms in the sample,

and identify the M unique words in the union of all descriptions.23 Focal firm i’s vocabulary is

represented by the vector Pi of length M, where each element takes the value one if the firm uses

the given word, and zero otherwise. The product similarity score, PSi, j for focal firm i and firm

j is the dot product of normalized vectors for firms i and j and is bounded [0,1]. The product

similarity score is higher when firms i and j use more of the same words. Firm pairs with product

similarity scores above a threshold level are defined to be peers. Based on this, the N peer group

firms of focal firm i are defined, and the product similarity values, PSi, j,t−1, are collected for all N

21See related studies by Hou (2007), Cohen and Frazzini (2008) and Cohen and Lou (2012) on return predictability
based on close economic affinities.

22See related studies by Foucault and Fresard (2014), Cao et al. (2019), and Cao et al. (2021) using text-based
measure of Hoberg and Phillips (2016) to identify firm industry peers.

23They keep only nouns and proper nouns, and exclude common words and geographic terms as explained in
Hoberg and Phillips (2016).
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peer firms.24

The firm-level cybercrime news index, sourced from Refinitiv MarketPsych, provides individ-

ual firm reports that allow us to identify firms mentioned in cybercrime news articles.25 For focal

firm i, we check whether each of its N peer firms are mentioned in cybercrime news articles in the

previous year. For peer firm j, an indicator variable I takes the value one if it is mentioned in at

least one article, zero otherwise.

Combining product similarity scores and firm-level cybercrime news indicators, we calculate

a novel metric, the Product Similarity Peer firm Cybercrime News (PSPC) as:

PSPCi,t =
∑

N
j PSi, j,t−1 × I j,t

∑
N
j PSi, j,t−1

, (8)

where, PSi, j represents the product similarity of firm i to peer group firm j, and I j is an indicator

variable that takes the value 1 when firm j is mentioned in cybercrime news. PSPC lies between 0

and 1, and is increasing in the number of peer group firms that are mentioned in cybercrime reports,

and increases if closer competitors, rather than more distant ones, are mentioned in cybercrime

news reports.

The PSPC metric thus reflects the focal firm’s product market overlap with firms implicated

in cybercrime news, ranging from 0 (no overlap) to 1 (complete overlap).26 Moreover, accounting

for a firm’s overall product similarity allows for a comprehensive analysis, enabling investors to

evaluate the entire product market spectrum in which the focal firm operates. As highlighted by

Cohen and Lou (2012), the complexity arising from a firm’s engagement across diverse markets

can complicate investor understanding, making it more challenging to process information for

conglomerate firms compared to their monoline or niche counterparts. This aspect underscores the

interplay between product market diversity and investor perception of cybercrime risk.

Our proposition is that firms with less cybercrime news relating to firms present in their prod-

24To mitigate look-ahead bias, we employ the Hoberg and Phillips measure lagged by one fiscal year.
25The yearly distribution of firm-level cybercrime news is in Figure 5.
26If the focal firm’s business only spans the product markets where the cybercrime news reported peers to operate,

as ∑
N
j PSi, j,t−1 × I j,t = ∑

N
j PSi, j,t−1, the PSPCi,t equals 1. On the contrary, if the focal firm’s product is totally distinct

to cybercrime news reported firms, the ∑
N
j PSi, j,t−1 × I j,t = 0 and the PSPCi,t = 0.
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uct markets are considered to have lower cybercrime risk exposures. During periods of heightened

cybercrime concerns, firms with lower PSPC values should be perceived by investors to be less vul-

nerable to cybercrime risk, positively influencing their market valuation. This is examined through

regression analyses similar to those in section 4.1, incorporating financial controls like R&D and

intangible assets to account for innovation influences.

The regression results are presented in Table 6.27 Columns (1) and (3) demonstrate a statisti-

cally significant negative relation at the 1% level between the interaction term HCCR×PSPC and

βTCCA. Continuing to follow the recommended approaches of Liu and Winegar (2023) and Mit-

ton (2024), a reduction in product similarity to peers involved in cybercrime news by one within

standard deviation, approximately 10% in terms of PSPC, results in a 4.29% increase in the firm’s

cybercrime beta relative to its own within standard deviation.28 This confirms that firms with

fewer product market peers involved in cybercrime news are more highly valued by investors dur-

ing times of heightened cybercrime concerns. This relation also holds when we take the logarithm

of PSPC to mitigate potential data skewness, as shown in columns (2) and (4). To further demon-

strate the reliability of our results, we adjust our approach by simplifying the product similarity

measure, focusing solely on the count of peers within cybercrime news narratives versus the total

peer count. The consistent findings across columns (5) to (8) reinforce the notion that firms with

less product market overlap with cybercrime news-reported peers are perceived as shielded from

industry-wide common shocks induced by cyber threats.

Our findings suggest that the pervasive nature of cybercrime, as evidenced through peer firms’

news narratives, acts as a conduit for negative spillovers, overshadowing the potential competitive

advantages from product market rivalry as highlighted by Bloom et al. (2013). The amplified ef-

fects of cyber threats, modeled by Eisenbach et al. (2022), resonate with our findings, underscoring

the heightened vulnerability within interconnected financial sectors. Similarly, Jiang et al. (2024)’s

exploration of negative responses among peer firms to cyber incidents, mediated by data similarity,

27All regressors are standardized to have zero mean and unit standard deviation for consistency.
28The net effect of PSPC is calculated as the sum of HCCR×PSPC and PSPC, then divided by the within standard

deviation of βTCCA which is 0.7. The within standard deviation of PSPC is approximately 10%.
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aligns with our analysis, revealing how shared service and product offerings can serve as conduits

for risk dissemination. Our investigation extends these discussions by specifically addressing how

investors recalibrate their valuation of firms in light of their susceptibility to cybercrime, as influ-

enced by their competitive positioning within product markets. The interconnectedness, suggests

a collective exposure to cyber risks, necessitating a nuanced investor assessment of firm resilience.

4.4 Digitization and cybercrime

In an era of digital transformation, the adoption of artificial intelligence and digital technologies

by firms has garnered significant scholarly interest for its economic impact. Babina et al. (2024)

reveals that AI investments are linked to significant growth in sales, employment, and market val-

uation due to increased product innovation. Similarly, Chen and Srinivasan (2023) investigate the

positive valuation effects of digital technology adoption in non-tech firms. However, these digital

advancements also introduce vulnerabilities, a concern echoed by The Global Risks Report WEF

(2022), which highlights the balance between digital innovation and cybersecurity risks.29 There-

fore, we posit that while digital technologies boost firm performance, they also heighten exposure

to cyber threats, influencing investor valuations amidst varying degrees of firm digitization.

Addressing the challenge of quantifying digital technology adoptions, we apply Chen and

Srinivasan (2023)’s approach, constructing a firm-level digital activity metric from conference call

scripts using a defined set of digital terms spanning 2002 to 2021. Figure 6 displays the word cloud,

highlighting the prominence of “IoT” (Internet of Things) and other AI-related terminology, which

collectively illustrate the evolving digital landscape within corporate strategies. To accurately

capture digital engagement while minimizing overlap with cyber risk indicators, we exclude big

data-related terms in our analysis.30

29Chapter 3 of the WEF 2022 Global Risk Report, titled ”Digital Dependencies and Cyber Vulnerabilities,” high-
lights the increasing reliance on digital technologies and the corresponding rise in cyber vulnerabilities. It discusses
how this growing digital interconnectedness exposes economies and societies to new risks, emphasizing the need for
robust cybersecurity measures to protect against potential cyber threats. The chapter is instrumental in understand-
ing the complex relationship between digitalization and cybercrime, providing a foundation for exploring how digital
advancements can both drive progress and introduce new risks.

30Specifically, the digital terms contain five major topics, including analytics, artificial intelligence (AI), cloud (-
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Beginning in January 2003, we aggregate quarterly digitization metrics from the previous year

for each firm’s digitization level (Digital), employing a yearly rolling window to ensure timeliness

and avoid look-ahead bias.31 To address initial data skewness caused by lots of zeros, we also ap-

ply quantization to Digital, following Chen and Srinivasan (2023). Our hypothesis is that as firms

intensify their digital activities, their vulnerability to cyber threats may increase, leading investors

to prefer less digitized firms as a hedge against cybercrime risk during periods of increased report-

ing in news media. This suggests an inverse relation between firm digitization and cybercrime beta

(βTCCA).

Table 7 presents the regression results.32 The interaction terms HCCR× Digital and HCCR×

QDigital in columns (1) and (4) show a significantly negative relationship between a firm’s cyber-

crime beta and digitization. During high cybercrime news coverage periods, a one-within standard

deviation decrease in the firm’s digitization (Digital) raises the cybercrime beta by 4.1% of its

within standard deviation, suggesting reduced exposure to cybercrime risk. Moreover, a shift from

higher to lower digitization levels (QDigital) increases cybercrime beta by 8.22% of its within

standard deviation, reinforcing the protective hedging effect of low digitization during periods of

intensified cybercrime news.33

We control for the effects of intangible assets and productivity, as measured by sales per

employee, to isolate the impact of firms’ digitization investments.34 Results in columns (2) and

(5) confirm consistent outcomes even after controlling for these factors. As digitization can be

viewed as an intangible asset, we add HCCR× Intangibility in columns (3) and (6). The results

computing), digitization, and machine learning (ML) proposed by Chen and Srinivasan (2023). As stated by Jamilov
et al. (2023) and Florackis et al. (2023), data-related keywords are ranked as the most frequent keywords to measure
cyber risk. Therefore, we exclude such terms to make our measure less confounding with cyber risk measures. The
firm-level measure is constructed by counting the topics-related words mentioned in conference calls.

31Using past four-quarter digitization data from conference calls assures that investors make decisions at quarter t
only have information up to t −1, thus without look-ahead bias and conservative for information availability. We take
the logarithm for Digital to reduce positive skewness in the data.

32All regressors are standardized to have zero mean and unit standard deviation for consistency.
33The net effect of digitization is calauted as the sum of HCCR× Digital (QDigital) and Digital(QDigital), then

divided by the within standard deviation of βTCCA which is 0.73 in this sample.
34This consideration is crucial as digitization expenditures often contribute to a firm’s intangible assets and can

significantly enhance productivity. By adjusting for these factors in our regression models, we ensure the robustness
of our findings regarding the adoption of digitization, demonstrating its distinct influence beyond the contributions of
intangible assets and productivity enhancements.
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for digitization are unchanged, maintaining a significant inverse relationship with cybercrime beta

despite any potential positive correlation of intangible assets with cybercrime risk.

Overall, the empirical evidence highlights the crucial role of digitization in shaping firms’

cyber risk profiles. Notably, the inverse relation between digitization and cybercrime beta echoes

the results in columns (5) and (6) of Table 3, highlighting the implications of non-tech firms’

hedging potential against cyber risks.

4.5 IT investment and cybercrime beta

Following our exploration of digitization’s broader implications for firm vulnerability to cyber-

crime in Section 4.4, we narrow our focus to the realm of IT investments. While digitization

encompasses a broad range of digital activities and transformations within firms, IT investments

represent a targeted allocation of resources towards information and communication technology

infrastructure, including cybersecurity measures. This distinction is crucial as we delve into the

relationship between IT expenditures and firms’ susceptibility to cyber risks.

Brynjolfsson and McElheran (2016) highlight that firms’ IT investments are a foundational

element for firms that adopting data-driven decision-making. A recent theoretical study by Gomes

et al. (2023) extends the models by Farboodi et al. (2019) and Farboodi and Veldkamp (2021) and

builds a model of the data economy in which data helps firms optimize their business processes

whilst being subject to risk of damage by cyber criminals. The authors propose a cybercrime-driven

innovation loop in which firms can hedge against cybercrimes by innovating more, but which only

serves to make data even more valuable for cybercriminals. This model suggests a complicated

relation between a firm’s investment in data technology and its sensitivity to cybercrime.35

To examine the impact of IT investments on firms’ cyber vulnerability, we use IT spending

data from the Harte Hanks Market Intelligence Computer Intelligence Technology database. This

granular data covers firm IT spending at the site level, with over 30 million yearly observations

35Kamiya et al. (2021) study the connection between firm characteristics and the likelihood of cyber attacks, finding
that firms most likely to be attacked firms are large, are more profitable, are less risky, have higher growth opportunity,
have higher leverage and asset intangibility, and make less investment in capital expenditures and R&D.
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from 2012 to 2021.36 We use the firms’ estimated total spending on hardware, software, services,

and communications. We would like to aggregate each site’s IT spending to the firm level using

the Enterprise ID code in the data set. Unfortunately, for some firms, this ID is not unique because

the company names are recorded with minor differences.37 To overcome this issue, we use the

company name (GVKEY) used in the Compustat link table to match all companies in the Harte

Hanks database. To assign the GVKEY to firms in Harte Hanks, we merge the two datasets by

matching company names with a cosine similarity algorithm. We restrict the similarity score to

at least 0.67 to ensure matching accuracy.38 Once matched, we aggregate each firm site’s IT

investment using GVKEY to obtain its yearly IT spending. After merging with our cybercrime

beta (βTCCA) and financial fundamentals, we have 1743 firms in the sample from 2012 to 2021.

We calculate the cumulative average of total IT spending, total assets, and IT/Assets for the

lowest (P1) and highest (P5) cybercrime beta stocks from 2013 to 2021. The top panel of Figure

7 shows that low cybercrime beta firms in P1 consistently outspend their P5 counterparts in IT

investments, with the disparity widening notably after 2015. The middle panel shows the total

assets for firms in P1 and P5.39 Firms with higher cybercrime risk (P1) also experience more rapid

asset growth compared to those better hedged against cybercrime (P5). Importantly, this trend

persists even when IT spending is considered relative to total assets, as illustrated in the lower

panel, revealing that firms with higher cybercrime risk (P1) dedicate a greater share of their assets

to IT investments compared to those more insulated from cybercrime (P5).

These findings are consistent with the implications of the models discussed above. Firms in

P1 spend a lot on IT investment to innovate and protect themselves from cyber attacks to sustain

growth. Cybercriminals find this valuable data increasingly tempting and the market prices this

risk accordingly (Gomes et al., 2023). We posit that, as concerns about cybercrime risk increase,

investors value firms that can effectively hedge against cybercrime. Therefore, a low IT/Assets

36A recent study by He et al. (2021) uses the same data set to explore the question of IT spending in banking.
37For example, ABC company has two IDs because the name of the company is recorded by either ABC Ltd. or

ABC Corp.
38We manually check matched firms, and the accuracy is about 99% by using 0.67 as the threshold.
39We normalize all sub-figures to start from zero for visual presentation. The 2013 value in our figures is cumula-

tive, incorporating data from 2012.
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ratio reduces firms’ exposure to cybercrime risk (high cybercrime beta) when cybercrime concerns

are raised in the market.

We test the importance of the IT/Assets ratio (”IT Budget”) during times of heightened cyber-

crime risk by regressing βTCCA on the interaction term between HCCR and IT Budget. The control

variables are the same as the digitization investigation in Table 7. All regressors are standardized

to have a mean of zero and a standard deviation of one.

Table 8 reports the estimation results. Column (1) shows that the estimated coefficient on

the interaction term HCCR× IT Budget is negative and significant at the 1% level. The result is

essentially unchanged by including control variables in column (2). An decrease in the IT Budget

ratio of one within standard deviation, results in a 1.3% increase in the firm’s cybercrime beta

relative to its own within standard deviation. These results indicate that a firm with a low IT/Assets

ratio has a reduced exposure to cybercrime risk during periods of high cybercrime news coverage.

In subsequent columns, we break down the IT Budget into four sub-categories: spending on

hardware, software, commutation, and services. Interestingly, with the exception of service spend-

ing, the interaction terms between HCCR and software is negative and significant at the 1% level;

meanwhile, hardware and communication spending are borderline significant. These results indi-

cate that firms spending less on hardware, software, and communication in IT-related investment

per given unit of assets, have reduced exposure to cybercrime risk in periods of heightened risk.

The empirical evidence in this section is consistent with the theoretical propositions of a

cybercrime-induced innovation feedback loop in the study by Gomes et al. (2023). Firms adopting

data-driven business models to drive their growth and innovation need high levels of IT invest-

ment (Brynjolfsson and McElheran, 2016). When these investments successfully foster sustainable

growth through digital innovation, they not only justify the expenditure but also elevate the value

of the firm’s data, inadvertently making it a more lucrative target for cybercriminals. Conversely,

firms less reliant on data-driven strategies tend to allocate less towards IT for growth or innovation,

resulting in lower digital-related and IT expenditures. This lower investment level, while indicative

of a business model less dependent on digitization, paradoxically renders these firms less appealing
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to cybercriminals and potentially more resilient to attacks due to their conservative IT spending.

5 Hedging and Cyber Risk Insurance Costs

We now return to discuss the implications of our earlier asset pricing results for the hedging and

insurance of cybercrime risks. This section makes two contributions. We first use our asset pricing

results to construct an insurance-like hedging portfolio, and examine its performance across major

cyber crime events that have affected the US economy. Having demonstrated the encouraging

hedging performance of the portfolio, we turn to the cybercrime risk premium and the implied

insurance costs.

On April 17 2022, The Wall Street Journal published a news article titled “Insurers Wary

of Longer-Term Costs of Cyberattacks”, highlighting the difficulties insurance underwriters are

facing over cyber insurance cover.40 As a new species of systematic risk, the lack of historical

data and limited awareness of the true cyber risk exposures of business entities mean that insur-

ance companies face challenges in setting the premium and policy coverage limits. Underpricing

new products risks insurance company insolvency (Mohey-Deen and Rosen, 2018). Granato et al.

(2019) highlight the challenges in estimating insured losses following cyber-related incidents, in

part because cyberattacks often affect many organizations simultaneously. A recent survey by Koi-

jen and Yogo (2022) highlights the challenges and difficulties faced by policy issuers in the cyber

risk insurance market from an academic point of view. Hence, pricing and designing contracts

for cyber risk by referencing other markets with tail or disaster risks is a ripe field for academic

research to explore.

40https://www.wsj.com/articles/insurers-wary-of-longer-term-costs-of-cyberattacks-3912feaf.
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5.1 Evaluation of a cyber hedge strategy

Cybercrime was highlighted as one of the top global risks by the 2021 WEF Global Risk Report

(McLennan, 2021).41 Implementable investing strategies that hedge against climate risk have been

discussed in the climate risk literature.42 Although cybercrime is a systematic risk causing huge

economic loss, investors increasingly struggle find cybersecurity insurance. We propose an effec-

tive insurance-like portfolio to hedge losses from cyberattacks and examine the performance of

this hedging portfolio in an event study analysis.

We collect cyber events recorded by the Center for Strategic & International Studies (CSIS).

CSIS records 778 global cyber incidents from 2006 to 2021, of which 519 incidents were reported

online within one month. We search Google to find the earliest news report of each incident.43

We retain only those incidents related to the US by manually reading news reports or articles,

leaving us with 266 US-related incidents between 2007 and 2021, or around 1.5 cyber-related

crimes each month. In months with multiple incidents we retain only the first incident, reducing

the samople to 112 significant cyber events. Our sample of incidents include notorious cyberattacks

such as Citi Bank in 2011, Equifax in 2017, and Colonial Pipeline in 2021.

To validate the cyber incident dates reported data by web crawlers, we inspect if these cyber

incidents significantly increase the Refinitiv cybercrime news coverage (CCB). We assign a dummy

variable equal to 1 for days we find cyber incidents and zero otherwise. Panel A in Table 9 shows

cyber incident days coincide with cybercrime news coverage for the 112 incidents.

The hedging portfolio construction is similar to the methodology outlined by Alekseev et al.

(2022). At the end of each month, we form five portfolios based on the βTCCA estimated from

41The top 10 risks include extreme weather, climate action failure, human environmental damage, infectious dis-
eases, biodiversity loss, digital power concentration, digital inequality, interstate relations fracture, cybersecurity fail-
ure, and likelihood crises.

42For example, Andersson et al. (2016) propose a strategy by investing in a decarbonized index to hedge climate
risk for institutional investors. The seminal study by Engle et al. (2020) constructs mimicking portfolios to hedging
against climate news risk innovation.

43We carefully handle public information available to investors when incidents happen or are reported in the news
during market closing time, weekends, or market closing days, assigning the cyber incident information day to the next
trading day. For example, the Equifax cyberattack was released to the public after 5:00 PM on September 7, 2017; we
corrected this to September 8, 2017.
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equation (7). We then compute the five portfolios’ abnormal daily return using a CAPM benchmark

model around each event.

Notably, our hedging strategy is implementable since any investor or fund manager can con-

struct the portfolios based on available information up to time t and hold the long-short portfolio

for time t + 1. In other words, investors can form a portfolio that mimics an insurance-like as-

set at month end, and the insurance-mimicking portfolio hedges risks induced by cyber incidents

occurring in following month.

Figure 8 presents the average performance of five portfolios across the 112 cyber incidents

in 10 days window. Portfolio 5 underperforms portfolio 1 before the cyber incident day (t0) be-

cause investors pay a higher price for cybercrime hedging assets to accept a lower expected return.

However, when a cyber incident becomes public knowledge at t0, portfolio 5 swiftly demonstrates

its hedging power. The red solid line with squares in Figure 8 clearly shows that average cumula-

tive returns in portfolio 5 immediately shift upward and outperform all other portfolios up to five

days after the cyber incident. On the contrary, portfolio 1 shown with the blue solid line with cir-

cles underperforms after incident. Essentially, the statistical results are shown in Panel B of Table

9. The long-short hedging portfolio earns a highly statistically significant 0.37% in the two-day

post-incident window.

A back-of-the-envelope calculation implies a substantial economic gain from our insurance

hedging strategy against cyber attacks. The average one-day hedging return from CARt,t+1 is

0.19% (0.37%/2). There are 8 cyber incidents per year based on 112 incidents in the 14 years

from 2007 to 2021. The Poisson probability of eight incidents in one year is about 14%.44 The

total market value of stock market in 2022 was $40.51 trillion. Our hedging portfolio prevents

cybercrime-induced systematic loss of $86.21 billion per year (0.19%×8×0.14×$40.51×1000),

consistent with the estimated amount of annual loss ($57 to $109 billion) by The U.S. Council of

Economics Advisers in the 2018 report.

Such hedging portfolios are not easily constructed from methods in the cybercrime literature.

44Eight cyber incidents per year implies the Poisson intensity λ=8. Therefore, P(X = 8) = 88×e−8

8! ≈ 14%
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The first year in Florackis et al. (2023)’s study is 2007; therefore, we construct three portfolios

from the second quarter of 2008 to the first quarter of 2019. Portfolio 1 (P1) contains firms with

zero cybersecurity risk exposure from 10-K textual information. Portfolios 2 and 3 are divided

based on the median of all non-zero 10-K-based risk measures. The hedging portfolio is long

stocks in P1 and short stocks in P3. We evaluate performance across 80 cyber incidents from April

2008 to March 2019.

Figure 9 shows the average performance of three portfolios across 80 cyber incidents with a

10 days window. P1 shows slight outperformance compared to P3 post-incident, but the hedging

magnitude is negligible as demonstrated by the results in Table 10. The low-minus-high (LH)

hedging portfolio earns statistically insignificant and economically small abnormal returns for all

days after these events.

5.2 The cybercrime risk premium and cyber risk insurance implications

Having established the effectiveness of our hedging strategy, we next quantify the risk premium

investors pay to hold these cybercrime hedging assets, thereby giving insights into the cyber risk

insurance premium from an asset pricing perspective.

We calculate the insurance premium as follows:

E(IP) = E(MVt)∗12∗N f irms ∗E(FCCAt) (9)

where E(IP) is the expected insurance premium that cyber risk insurance underwriters can charge.

E(MVt) is the expected median market value of either all firms ($821.73 million) in our sample for

upper-bound calculation or firms that are more exposed to cybercrime risk in P1 ($1135.78) for a

lower-bound calculation. N f irms is the average number of total firms or firms in P1 in our sample,

which equals 3257 or 702, respectively. E(FCCAt) is the expected monthly risk premium as a

return-based calculation from the asset pricing model we turn to next.

In deriving the risk premium, we follow Lamont (2001), Ang et al. (2006) and Engle et al.
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(2020). From each rolling window one-year regression of equation (5), we estimate the weights,

bt , on returns from each candidate value-weighted traded asset portfolio, Zt , that track the risk

exposure to innovations in the cybercrime news series. Therefore, we have portfolio weights at the

end of each portfolio formation period. We then calculate the ex-post pricing factor, FCCAt+1, as:

FCCAt+1 = b′t ×Rt+1 (10)

where Rt+1 = rβCCA
p,t+1 is the vector of five portfolio returns in the month following the estima-

tion window. For example, in step 1, we estimate the weights b′ using data from 01/01/1998

to 12/31/1998 by using equation (5). We then multiply b′ by the vector of returns earned by the

five value-weighted portfolio returns in January 1999 to obtain the cybercrime pricing factor return

for January 1999. We continue by rolling forward one calendar month, estimating weights over the

updated one-year rolling window and multiplying these by returns earned in the subsequent month

to obtain the pricing factor return for our full sample through December 2021.45

The first column of Table 11 shows that the ex-post cybercrime news shock pricing factor

earns -0.44% per month, on average, with an associated t-statistic of 3.51. Subsequent columns

show that while this factor’s returns are marginally correlated with other benchmark pricing fac-

tors, it bears little relation to the returns of other commonly used factors and a large unexplained

component remains irrespective of the benchmark factors included in the regressions. Harvey et al.

(2016) argue that the usual five percent level is too low a threshold when testing for statistical sig-

nificance of a new pricing factor because of data mining concerns and the large extant body of

research examining the cross-section of expected returns. They suggest that any new factor needs

an associated t-statistic greater than three, and so it is comforting to note that the average monthly

return of the tracking factor has an associated Newey-West t-statistic of around -3.20.

Plugging this risk premium into equation (10) implies investors give up about 5.28% (12×

0.44% ) per year to invest in stocks in P5 for cybercrime risk hedging. Insurance companies

45We also construct the ex-post mimicking pricing factor by following the classical method developed by Fama and
French (1993). The result is similar.

37



writing cyber risk insurance policies can expect to earn a similar amount of return to this market-

implied cybercrime risk premium. The upper-bound back-of-the-envelope estimation of the cyber

risk premium for the whole stock market is $141.31 billion ($821.73×5.28%×3257). The lower-

bound calculation for the most exposed firms in P1 is $42.10 billion ($1135.78× 5.28%× 702).

To put these costs in perspective, CEA (2018) estimate annual cyber-related losses that range from

$57 to $109.

Based on the congressional committees’ report by the United States Government Account-

ability Office, insurance companies have increased the price of cyber risk insurance and lowered

coverage limits due to the increased number of cyberattacks and rising insured costs. Although

the direct written premium has increased from $2.1 to $3.1 billion from 2016 to 2019, this growth

implies the coverage limit is less than 6% of the losses estimated by CEA (2018). The insurance

industry faces multiple challenges to expand, and some 70% cybersecurity policies are issued by

just ten insurance groups in the market (GAO, 2021). Our risk premium estimation provides an

initial reference point for insurers, which we leave to be refined in future studies.

6 Robustness Checks

6.1 Google search trend data

The basis of our analysis has been the Refinitiv MarketPsych cybercrime news series, essentially

a measure of the supply of information about cybercrime in the press. This section shows that an

alternative, publicly-available measure of the demand for information about cybercrime generates

very similar results. Specifically, we use daily Google search trend data on the single keyword

“cybercrime” from 01/01/2007 to 12/31/2021, an interval considerably shorter than the one used

for Refinitiv MarketPsych cybercrime index-based analysis but still long enough to provide mean-

ingful results. We take the first log difference of the Google search trend measure as a measure of

investors’ demand for cybercrime-related issues.
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We estimate the Google cybercrime beta as follows:

∆SV It = logSV It − logSV It−1

Ri,t = αi +βMKT,iRMKT,t +βSV I,i∆SV It (11)

thus, we conduct the portfolio analysis and contract the ex-ante portfolio tracking factor (denoted

by T SV I) in the Google Search Trend data universe. Table 12 shows the results are very consistent

with the ones in Table 2 using the Refinitiv MarketPsych cybercrime news index. Additionally, we

repeat the construction of the ex-post tracking factor. In an untabulated appendix, the results are

consistent with the tracking factor created by using news-measured cybercrime risk.

We conclude that our results are not sensitive to considering innovations in the supply of infor-

mation on cybercrime from the Refinitiv data series, or innovations in the demand for cybercrime

information from Google search data. In both cases, hedging stocks that offer better returns when

such shocks occur command a high price and hence offer lower returns, on average.

6.2 Alternative pricing factor construction methods

In this sub-section, we demonstrate the insensitivity of our results to constructing the pricing factor

using the Fama-French approach, rather than the regression approach detailed in section 5.2. We

also continue to demonstrate the consistency of our results when using Google search trend proxies

of cybercrime.

Table III in the Online Appendix reports the results of constructing a Fama-French-style pric-

ing factor using estimates of stocks sensitivities to innovations in the Refinitiv series (βCCA). Stocks

are sorted into intersections of two portfolios according to market capitalization using NYSE

breakpoints and three portfolios according to cybercrime news sensitivities. The factor is then

constructed as the average return in the large and small cap high sensitivities portfolios minus the

average return in the large and small cap low sensitivities portfolios. The average return on this

factor is -0.37% per month with an associated t-statistic of 2.81. The other columns in this panel
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show that this survives the inclusion of alternative commonly-used factors.

Table IV in the Online Appendix replicates this but uses sensitivities to the Google search

trend of cybercrime rather than innovations to Refinitiv’s cybercrime news series. The headline

results show that the pricing factor is economically large, statistically significant, and is not much

affected by accounting for other factors remains. However, compared with both the results in Table

III and IV, it is noticeable that several other factors are significantly related to this version of the

pricing factor. Nevertheless, including these only serves to increase the magnitude of the pricing

factor’s alpha.

6.3 Robust to only S&P 500 Stocks

We further investigate if our results are driven by small and illiquid stocks, which are not imple-

mentable and suffer data mining issues stressed by Harvey et al. (2016). We re-create Table 2 by

only testing stocks from S&P 500. Table V and VI in the Online Appendix shows our key findings

also hold in the narrow cross-section of large, liquid, and S&P 500 stocks.

7 Conclusion

We study the influence of firms’ sensitivities to cybercrime on the pricing of individual stocks and

equity portfolios, utilizing a news-based cybercrime index from Refinitiv MarketPsych and cor-

roborating findings with Google search trends data. Our analysis reveals that stocks with negative

beta exposures to innovations in cybercrime news, indicative of a vulnerability to cyber threats,

command higher future returns, consistent with the Intertemporal Capital Asset Pricing Model

(ICAPM) framework. Conversely, stocks that hedge against cybercrime shocks by covarying pos-

itively with cybercrime news innovations yield lower returns.

Bivariate portfolio-level analyses and stock-level cross-sectional regressions, controlling for

established pricing factors, confirm a significant negative correlation between cybercrime beta ex-

posures and subsequent stock returns. This underscores the relevance of cybercrime sensitivity as
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a determinant in asset pricing, beyond traditional pricing factors.

Having demonstrated that cross-sectional differences in sensitivities to cybercrime news have

important asset pricing implications, the obvious question is what drives firm sensitivities. Our

analysis considers four key factors that contribute to firms’ varying sensitivities to cybercrime risk,

particularly during times when cybercrime concerns are heightened in the market.

First, we establish a link between high cybercrime beta assets and robust corporate gover-

nance, particularly through a talent density channel. This involves quantifying the presence of top

management experts with expertise in risk management, governance, and informatics.

Second, we observe that firms with fewer product market peers reporting cybercrime inci-

dents tend to exhibit higher cybercrime beta, suggesting a transmission of cybercrime risk within

industries through spillovers.

Third, we demonstrate an inverse relationship between a firm’s digitization level and its cyber-

crime beta, highlighting the increased vulnerability to cyber threats associated with greater digital

adoption. This finding underscores the dual-edged nature of digitization, where the pursuit of

growth through digital initiatives simultaneously elevates a firm’s cyber risk exposure.

Fourth, we delve into the interplay between IT investment and cybercrime risk, drawing on

recent literature concerning the data economy. Using detailed firm-specific IT spending data, we

show that firms with significant investments in IT – typically data-driven enterprises – enjoy sub-

stantial returns in terms of firm growth (and hence high IT/Assets ratios). This success has a

dark side, however, because it makes such firms attractive targets to cybercriminals due to their

lucrative data assets. On the flip side, companies with a less data-centric focus yet substantial

IT investments for protection tend to be less appealing to cybercriminals and are better shielded

against cyber threats. Our analysis reveals a pronounced negative correlation between the ratio of

IT spending to assets and firms’ sensitivities to cybercrime, underscoring the intricate dynamics at

play between technological advances, economic incentives, and cybersecurity.

In the third part of our analysis, we consider the hedging and insurance of cybercrime risks.

We demonstrate that high cybercrime beta stocks significantly outperform low beta stocks across
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112 significant cyber incidents affecting the U.S. economy. This not only illuminates the protective

value of certain stocks against cybercrime risks but also offers a perspective on cybercrime risk

insurance from an asset pricing viewpoint. We quantify the stock market-implied price of cyber-

risk insurance, shedding light on the potential for expansion in the cyber-risk insurance market.

This is particularly important in an era of rapid digitization, where the proliferation of digital

technologies fuels innovation but also amplifies cyber vulnerabilities, thereby exacerbating the

supply-demand imbalance in the cyber insurance market.
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Figure 7: Firms IT Expenditures & Assets P1 and P5 Portfolios from 2013 to 2021
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Table 1: AR(6) Coefficients of Refinitiv MarketPschy cyberCrime news measure
This table reports the results from equation (2), an AR(6) model. The left panel presents the autocorrelation
coefficients subject to 6 lags. The right panel presents results by adding ∆V IX and ∆EPU as additional control
variables. Dicker-Fuller test statistics and innovation AR(1) coefficients are reported for the AR(6) model. The
original sample is from 1998:01 to 2021:12, and observations are lost in the right panel subject to the data avail-
ability of V IX and EPU . For each regression, the estimated coefficients are reported in line 1, and Newey-West
t-statistics are reported in parentheses and computed with 6 lags. N is the number of observations in each regres-
sion and R̄ is the Adjusted R-squared.

Cybercrime Coverage CCBt CCBt
CCBt−1 0.68 0.63

(14.05) (11.69)
CCBt−2 -0.09 0.06

(-2.52) (1.14)
CCBt−3 0.06 0.09

(1.65) (1.78)
CCBt−4 0.01 0.07

(0.29) (0.98)
CCBt−5 -0.03 0.11

(-1.05) (2.61)
CCBt−6 0.23 0.11

(6.65) (4.24)
∆V IX 0.93

(0.66)
∆EPU -0.01

(-0.26)
DF -10.35

Innovation AR(1) -0.03
N 8300.00 7206.00
R̄ 0.58 0.67
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Table 2: Portfolio Analysis of Stocks Sorted by βTCCA
This table reports portfolio sorting tests for estimated stock cybercrime beta. Panel A is univariate portfolio sorting based on the βTCCA.
First, for each month from December 1998, we form quintile portfolios every month by using NYSE breakpoints, βTCCA is estimated from
equation (7), using the last 12 months daily data. Second, we calculate the value-weighted returns for the next month. The first column
in Panel A reports individual stocks’ average cybercrime tracking beta in each relative beta quintile. The remaining columns in this panel
present the average excess returns (RET-RF) and risk-adjusted returns (α3,α5,α6, and α8) for the quintile value-weighted portfolios and the
high minus low portfolio in the last row. α3 is estimated from Fama and French (1993)) three-factor model; α5 is estimated from Fama and
French (2015) five-factor model; α6 is estimated from Fama and French (2015) five-factor model augmented with the momentum factor; α8
is estimated from Fama and French (2015) five-factor model augmented with the momentum, short-term and long-term reversal factor. Panel
B presents bivariate portfolio sorting results. First, we sort stocks based on each control variable into quintiles. Second, stocks within each
control variable are sorted into quintiles based on βTCCA. The next month’s value-weighted portfolio return alphas (α8) are reported for each
βTCCA quintile, averaged across the five control groups. The control variables include firm size (SIZE) measured by market capitalization
in millions of dollars, book-to-market ratio (BM), operating profitability (OP), investment (I/A), market beta (βMKT ), market volatility beta
(βV IX ), economic policy uncertainty beta (βEPU ), momentum (MOM), last month return (LRET), illiquidity (ILLIQ), idiosyncratic volatility
(IVOL), and analyst forecast dispersion (DISP). The differences in α8between quintile 5 (High) and quintile 1 (Low) are presented in the last
row. Newey-West adjusted t-statistics are reported in parentheses. The sample period is from 01/01/1998 to 12/31/2021.

Panel A: Univariate Portfolios Sorted by βTCCA

βTCCA Excess Return α3 α5 α6 α8

Low -0.66 1.08 0.41 0.40 0.39 0.39

(3.70) (2.80) (2.85) (2.85) (2.75)

2 -0.14 0.83 0.25 0.14 0.14 0.11

(3.19) (2.64) (1.72) (1.63) (1.38)

3 0.09 0.65 0.06 -0.06 -0.05 -0.07

(2.35) (0.81) (-0.76) (-0.68) (-0.96)

4 0.30 0.69 0.04 -0.04 -0.03 -0.03

(2.37) (0.42) (-0.46) (-0.30) (-0.27)

High 0.81 0.14 -0.69 -0.53 -0.50 -0.48

(0.32) (-3.49) (-2.92) (-2.94) (-2.64)

High-Low -0.95 -1.09 -0.92 -0.88 -0.86

(-2.93) (-3.44) (-3.12) (-3.17) (-2.90)

Panel B: α8 in Bivariate Portfolios Sorted by βTCCA

βTCCA SIZE BM OP I/A βMKT βV IX βEPU MOM LRET ILLIQ IVOL DISP

Low 0.32 0.36 0.49 0.43 0.32 0.44 0.34 0.37 0.38 0.33 0.36 0.49

(1.93) (2.25) (2.53) (2.45) (2.12) (2.75) (2.05) (2.75) (2.38) (2.03) (2.11) (2.79)

P2 0.05 0.12 0.05 0.10 0.10 0.05 0.08 0.16 0.04 0.03 0.04 0.07

(0.68) (1.51) (0.51) (1.22) (0.99) (0.58) (1.04) (1.85) (0.54) (0.43) (0.45) (0.90)

P3 -0.04 0.05 -0.04 -0.04 0.05 -0.06 -0.05 -0.08 -0.02 -0.02 -0.03 -0.05

(-0.51) (0.57) (-0.52) (-0.46) (0.71) (-0.84) (-0.65) (-0.98) (-0.19) (-0.26) (-0.29) (-0.67)

P4 -0.12 -0.10 -0.11 -0.11 -0.22 -0.15 -0.10 -0.14 -0.15 -0.14 -0.17 -0.13

(-1.66) (-1.15) (-1.16) (-1.20) (-2.62) (-1.67) (-1.03) (-1.43) (-1.68) (-1.82) (-1.70) (-1.30)

High -0.36 -0.45 -0.45 -0.37 -0.44 -0.44 -0.44 -0.34 -0.41 -0.40 -0.37 -0.37

(-2.40) (-2.62) (-2.74) (-2.20) (-2.68) (-2.60) (-2.74) (-2.22) (-2.52) (-2.49) (-2.07) (-2.63)

High-Low -0.67 -0.82 -0.93 -0.80 -0.76 -0.87 -0.78 -0.70 -0.79 -0.72 -0.73 -0.87

(-2.35) (-2.68) (-2.84) (-2.51) (-2.91) (-2.93) (-2.60) (-2.77) (-2.70) (-2.42) (-2.35) (-2.94)
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Table 3: Stock-Level Fama-MacBeth Cross-Sectional Regressions on βTCCA

This table reports the time-series averages of the slope coefficients from regressing stock one month ahead of
excess returns (in percentage) on the cybercrime tracking beta (βTCCA) and a set of control variables with return
predictability using Fama-Macbeth cross-sectional regressions. The control variables include firm size (SIZE)
measured by the market capitalization in millions of dollars, book-to-market ratio (BM), operating profitabil-
ity (OP), investment (I/A), market beta (βMKT ), market volatility beta (βV IX ), economic policy uncertainty beta
(βEPU ), momentum (MOM), last month return (LRET), illiquidity (ILLIQ), idiosyncratic volatility (IVOL), and
analyst forecast dispersion (DISP). Dnontech is a dummy variable assigned to 1 if the firms are in the defined non-
tech industry and 0 otherwise based on the SIC, NAICS, and GICS codes. The second-column, third-column,
and fourth-column report results for controlling different variables. Newey-West adjusted t-statistics are given in
parentheses.

Rt+1
(1) (2) (3) (4) (5) (6)

βTCCA -0.46 -0.35 -0.27 -0.27 -0.00 0.06
(-2.62) (-2.66) (-2.30) (-2.15) (-0.02) (0.46)

Dnontech × βTCCA -0.46 -0.36
(-2.27) (-2.34)

Dnontech -0.49 -0.32
(-2.42) (-1.78)

βMKT 0.02 0.13 0.09 0.00 0.04
(0.09) (0.50) (0.42) (0.02) (0.23)

βV IX -0.07 -0.07 -0.09 -0.08 -0.08
(-1.25) (-1.35) (-1.72) (-1.64) (-1.61)

βEPU -0.19 -0.25 -0.13 -0.15 -0.08
(-1.01) (-1.33) (-0.66) (-0.84) (-0.52)

SIZE -0.03 -0.13 -0.11 -0.08
(-0.56) (-1.39) (-1.20) (-0.94)

BM 0.04 -0.01 0.05 0.08
(0.37) (-0.11) (0.71) (1.12)

OP 0.13 0.14 0.16 0.14
(2.94) (2.41) (2.94) (3.14)

I/A -0.18 -0.20 -0.20 -0.20
(-2.61) (-3.00) (-3.31) (-3.47)

Illiquidity -0.04 -0.03 -0.01
(-0.66) (-0.51) (-0.23)

Reversal -1.37 -1.45 -1.56
(-3.40) (-3.75) (-4.33)

IVOL -0.47 -0.74 -0.80
(-0.94) (-1.56) (-1.73)

MOM 0.05 0.08 0.07
(0.27) (0.41) (0.36)

DISP -0.08 -0.09 -0.09
(-2.51) (-2.74) (-2.86)

Intercept 0.76 0.77 0.92 1.41 1.85 1.69
(2.24) (3.33) (2.16) (3.15) (4.54) (4.22)

FF 12 Industry Control No No No No No Yes
Observations 731,291 731,268 673,529 586,236 586,236 586,236
R-squared 0.02 0.05 0.06 0.09 0.10 0.12
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Table 4: βTCCA Estimated by 349 Portfolios with FF5 model
Thie table reports univariate portfolio sorting based on the βTCCA that is estimated with 349 equity portfolios. First,
for each of the 49 industry portfolios and 100 portfolios (10× 10 bivariate) formed on size and book-to-market,
size and investment, and size and profitability, we estimate the cybercrime tracking beta by using the ex-ante
tracking factor (TCCA) with Fama and French (2015) five-factor model. Second, we form quintile portfolios from
January 1999 to December 2021. The first column reports the equity portfolio’s average cybercrime tracking beta
in each relative beta quintile. The remaining columns in the panel present the average portfolio excess returns
(RET-RF) and risk-adjusted returns (α5,α6, and α8) for the quintile value-weighted portfolios and the high minus
low portfolio in the last row. α5 is estimated from Fama and French (2015) five-factor model; α6 is estimated from
Fama and French (2015) five-factor model augmented with the momentum factor; α8 is estimated from Fama and
French (2015) five-factor model augmented with the momentum, short-term and long-term reversal factor. αq is
estimated from Hou et al. (2015) q-factor model. Newey-West adjusted t-statistics are reported in parentheses.

βTCCA Excess Return α5 α6 α8 αq

Low -0.24 0.73 0.09 0.08 0.07 0.03

(2.34) (0.97) (0.88) (0.74) (0.35)

P2 -0.07 0.65 -0.03 -0.02 -0.03 -0.05

(2.32) (-0.51) (-0.38) (-0.55) (-0.83)

P3 0.008 0.67 -0.04 -0.02 -0.03 -0.02

(2.38) (-0.62) (-0.41) (-0.49) (-0.24)

P4 0.09 0.70 -0.02 -0.01 -0.02 0.002

(2.46) (-0.28) (-0.19) (-0.30) (0.03)

High 0.27 0.43 -0.17 -0.17 -0.16 -0.23

(1.41) (-2.22) (-2.21) (-2.16) (-2.65)

High-Low -0.30 -0.26 -0.25 -0.23 -0.26

(-2.68) (-2.30) (-2.22) (-2.05) (-2.23)

64



Table 5: βTCCA and Corporate Governance Relationship

This table reports the results from panel regressions of βTCCA on the number of corporate governance measures
with additional controls on stock-level characteristics and firm financial variables. First, following the study by
Pedersen et al. (2021), we use negated accruals (low accruals) to proxy corporate governance, and we measure
the accruals as in Sloan (1996). Second, G is the Refinitiv ESG-based governance score, and firms are catego-
rized into low, medium, and high groups. Third, the Expert is the log number of committee members who have
expertise in risk oversight (R), security (S), governance (G), operation (O), information (I), technology (T), data,
(D) and cyber (C)-related experience reported each year. HCCR is a dummy variable assigned to a value of one
to denote months where the average cybercrime news coverage exceeds this 90-day benchmark. The stock-level
characteristic variables include the market beta (βMKT ), the market volatility beta (βV IX ), the economic policy
uncertainty beta (βEPU ), the firm size measured by the logarithm of market capitalization, book-to-market ratio
(BM), operating profitability (OP), investment (I/A), last month return (LRET), illiquidity (ILLIQ), idiosyncratic
volatility (IVOL), and momentum (MOM). Financial control variables include financial leverage (Leverage) and
return on assets (ROA). All regressors are lagged for one period. Based on the data availability, the regressions for
accruals or experts are from January 1999 or 2003, respectively, to December 2021. t statistics are computed using
clustered standard errors at the firm level and reported in parentheses.

(1) (2) (3) (4) (5) (6) (7)
HCCR × Accruals 0.02 0.02

(5.77) (6.34)
Accruals -0.01 -0.01

(-1.57) (-1.69)
HCCR × G 0.02 0.01 0.01

(3.06) (2.57) (4.40)
G 0.00 0.01 0.01

(0.32) (1.18) (2.62)
HCCR × Expert 0.01 0.01

(7.31) (4.52)
Expert 0.02 0.01

(3.02) (1.18)
HCCR × Total Expert 0.00

(1.09)
Total Expert 0.02

(3.25)
HCCR 0.02 0.02 0.04 0.04 0.01 0.03 0.02

(11.59) (11.26) (4.05) (3.47) (1.56) (18.91) (16.16)
βMKT 0.07 0.10 0.07 0.07

(6.25) (9.23) (7.13) (7.14)
SIZE -0.05 -0.14 -0.09 -0.09

(-2.65) (-3.42) (-4.26) (-3.92)
BM 0.03 0.06 0.05 0.04

(4.25) (4.09) (6.24) (5.49)
MOM -0.00 -0.05 -0.03 -0.03

(-0.66) (-3.44) (-3.61) (-3.96)
LRET 0.00 -0.00 0.00 0.00

(0.85) (-0.10) (1.14) (0.70)
IVOL 0.06 0.22 0.07 0.07

(2.12) (8.59) (2.32) (2.40)
ILLIQ 0.02 0.31 0.07 0.07

(1.39) (8.19) (3.26) (3.15)
I/A -0.00 0.03 -0.00 -0.00

(-4.96) (0.07) (-3.02) (-2.96)
Leverage 0.02 -0.00 0.02 0.02

(3.44) (-0.14) (2.97) (2.93)
ROA 0.01 0.09 (0.03 0.03

(1.94) (4.87) (3.96) (4.48)
Firm Fixed Effect Yes Yes Yes Yes Yes Yes Yes
Year Fixed Effect Yes Yes Yes Yes Yes Yes Yes
Month Fixed Effect Yes Yes Yes Yes Yes Yes Yes
Observations 557,718 546,042 208,893 198,346 555,348 561,594 528,513
R-squared 0.21 0.21 0.29 0.32 0.24 0.23 0.24
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Table 6: βTCCA and Product Similarity

This table reports the results from panel regressions of βTCCA on firms’ product similarity based on peer firms’
cybercrime news (PSPC) with additional controls on stock-level characteristics and firm financial variables. First,
the PSPC is calculated in equation (8) based on the product similarity measure by Hoberg and Phillips (2016)
and Refinitiv MarketPsych’s firm-level cybercrime news index report. Second, #PSPC is the count of peers within
cybercrime news narratives versus the total peer count. HCCR is a dummy variable assigned to a value of one
to denote months where the average cybercrime news coverage exceeds this 90-day benchmark. The stock-level
characteristic variables include the market beta (βMKT ), the market volatility beta (βV IX ), the economic policy
uncertainty beta (βEPU ), the firm size measured by the logarithm of market capitalization, book-to-market ratio
(BM), operating profitability (OP), investment (I/A), last month return (LRET), illiquidity (ILLIQ), idiosyncratic
volatility (IVOL), and momentum (MOM). Financial control variables include financial leverage (Leverage) and
return on assets (ROA). The financial control variables include intangible assets (Intangibility), research and de-
velopment expenditure (R&D), and return on assets (ROA). All regressors are lagged for one period. Based on
the data availability, the regressions are from February 1999 to December 2021. t statistics are computed using
clustered standard errors at the firm level and reported in parentheses.

βTCCA
(1) (2) (3) (4) (5) (6) (7) (8)

HCCR × PSPC -0.01 -0.01
(-3.19) (-3.79)

PSPC -0.02 -0.01
(-5.36) (-3.27)

HCCR × Log(PSPC) -0.01 -0.01
(-3.22) (-3.84)

Log(PSPC) -0.02 -0.01
(-5.22) (-3.04)

HCCR × #PSPC -0.01 -0.01
(-3.00) (-3.63)

#PSPC -0.02 -0.01
(-5.69) (-3.32)

HCCR × Log(#PSPC) -0.005 -0.01
(-2.87) (-3.55)

Log(#PSPC) -0.02 -0.01
(-5.51) (-3.02)

HCCR 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
(14.34) (14.34) (14.36) (14.36) (14.33) (14.36) (14.37) (14.37)

Intangibility -0.02 -0.02 -0.02 -0.02
(-3.12) (-3.12) (-3.13) (-3.14)

R&D 0.01 0.01 0.01 0.01
(1.93) (1.93) (1.93) (1.93)

ROA 0.02 0.02 0.02 0.02
(2.68) (2.68) (2.69) (2.69)

Stock-Level Controls No No Yes Yes No No Yes Yes
Firm Fixed Effect Yes Yes Yes Yes Yes Yes Yes Yes
Year Fixed Effect Yes Yes Yes Yes Yes Yes Yes Yes
Month Fixed Effect Yes Yes Yes Yes Yes Yes Yes Yes
Observations 679,318 679,318 619,546 619,546 679,318 679,318 619,546 619,546
R-squared 0.22 0.22 0.23 0.23 0.22 0.22 0.23 0.23
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Table 7: βTCCA and Digitization

This table reports the results from panel regressions of βTCCA on firms’ digitization (Digital) with additional con-
trols on stock-level characteristics and firm financial variables. First, the Digital is measured by the methodology
of Chen and Srinivasan (2023) from conference call textual data. Second, QDigital is quantization to Digital to
mitigate skewness caused by lots of zeros in the early years. HCCR is a dummy variable assigned to a value of one
to denote months where the average cybercrime news coverage exceeds this 90-day benchmark. The stock-level
characteristic variables include the market beta (βMKT ), the market volatility beta (βV IX ), the economic policy
uncertainty beta (βEPU ), the firm size measured by the logarithm of market capitalization, book-to-market ratio
(BM), operating profitability (OP), investment (I/A), last month return (LRET), illiquidity (ILLIQ), idiosyncratic
volatility (IVOL), and momentum (MOM). Financial control variables include financial leverage (Leverage) and
return on assets (ROA). The financial control variables include intangible assets (Intangibility), research and de-
velopment expenditure (R&D), return on assets (ROA), and productivity. All regressors are lagged for one period.
Based on the data availability, the regressions are from January 2003 to December 2021. t statistics are computed
using clustered standard errors at the firm level and reported in parentheses.

βTCCA
(1) (2) (3) (4) (5) (6)

HCCR × Digital -0.02 -0.02 -0.02
(-9.10) (-8.20) (-7.86)

Digital -0.02 -0.01 -0.01
(-4.42) (-2.55) (-2.63)

HCCR × QDigital -0.04 -0.03 -0.03
(-8.74) (-7.94) (-7.60)

QDigital -0.02 -0.01 -0.02
(-4.11) (-2.38) (-2.47)

HCCR × Intangibility -0.01 -0.01
(-2.67) (-2.69)

Intangibility -0.02 -0.01 -0.02 -0.01
(-1.75) (-1.44) (-1.77) (-1.45)

HCCR 0.03 0.03 0.03 0.04 0.03 0.03
(16.57) (13.05) (13.10) (17.94) (14.62) (14.65)

R&D 0.03 0.03 0.03 0.03
(3.04) (3.04) (3.03) (3.03)

ROA 0.05 0.05 0.05 0.05
(4.52) (4.52) (4.52) (4.52)

Productivity 0.01 0.01 0.01 0.01
(2.07) (2.07) (2.07) (2.07)

Stock-Level Controls No Yes Yes No Yes Yes
Firm Fixed Effect Yes Yes Yes Yes Yes Yes
Year Fixed Effect Yes Yes Yes Yes Yes Yes
Month Fixed Effect Yes Yes Yes Yes Yes Yes
Observations 343,578 325,694 325,694 343,578 325,694 325,694
R-squared 0.23 0.25 0.25 0.23 0.25 0.25
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Table 8: βTCCA and IT Investments.

This table reports the empirical results of the firm’s IT investment determinants of the cybercrime beta. We use
a granular dataset about firms’ investments as a refined analysis. All IT spending measures are scaled by total
assets. The dependent variable is βTCCA. The IT Budget is the ratio calculated by a firm’s total IT investment
divided by total assets. Hardware, Software, Communication, and Service are decomposed ratios from the total IT
investment. HCCR is a dummy variable assigned to a value of one to denote months where the average cybercrime
news coverage exceeds this 90-day benchmark. The stock-level characteristic variables include the market beta
(βMKT ), the market volatility beta (βV IX ), the economic policy uncertainty beta (βEPU ), the firm size measured by
the logarithm of market capitalization, book-to-market ratio (BM), operating profitability (OP), investment (I/A),
last month return (LRET), illiquidity (ILLIQ), idiosyncratic volatility (IVOL), and momentum (MOM). Financial
control variables include financial leverage (Leverage) and return on assets (ROA). The financial control variables
include intangible assets (Intangibility), research and development expenditure (R&D), return on assets (ROA),
and productivity. All regressors are lagged for one period. Based on the IT investment data available, the test for
IT Budget and other measures covers the period from January 2013 to December 2021. t statistics are computed
using clustered standard errors at the firm level and reported in parentheses.

βTCCA
(1) (2) (3) (4) (5) (6)

HCCR × IT Budget -0.01 -0.01
(-2.69) (-2.42)

IT Budget 0.01 0.00
(0.69) (0.04)

HCCR × Hardware -0.01
(-1.60)

Hardware -0.01
(-1.33)

HCCR × Software -0.01
(-2.71)

Software -0.00
(-0.31)

HCCR × Communication -0.01
(-1.60)

Communication -0.01
(-1.25)

HCCR × Service -0.00
(-1.05)

Service -0.01
(-1.03)

HCCR × Intangibility -0.00 -0.00 -0.00 -0.00 -0.00
(-0.32) (-0.36) (-0.30) (-0.39) (-0.40)

Intangibility 0.04 0.04 0.04 0.04 0.04
(1.24) (1.25) (1.24) (1.26) (1.27)

HCCR 0.08 0.07 0.07 0.07 0.07 0.07
(16.13) (14.44) (14.34) (14.35) (14.31) (14.07)

ROA 0.13 0.13 0.13 0.13 0.13
(3.49) (3.52) (3.49) (3.52) (3.51)

Productivity 0.01 0.01 0.01 0.01 0.01
(0.73) (0.72) (0.73) (0.73) (0.73)

R&D 0.05 0.06 0.05 0.06 0.05
(1.22) (1.25) (1.23) (1.25) (1.25)

Stock-Level Controls No Yes Yes Yes Yes Yes
Firm Fixed Effect Yes Yes Yes Yes Yes Yes
Year Fixed Effect Yes Yes Yes Yes Yes Yes
Month Fixed Effect Yes Yes Yes Yes Yes Yes
Observations 79,697 74,797 74,797 74,797 74,797 74,797
R-squared 0.34 0.37 0.37 0.37 0.37 0.37
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Table 9: Cybercrime News Hedging Portfolio Evaluation

This table presents the performance evaluation of a cybercrime news hedging portfolio with long positive and
short negative cybercrime beta stocks across 112 cyber incidents. The 112 cyber incidents are the first cyber-
related crimes in each month from 2007 to 2021, recorded by CSIS as significant incidents in the US. Panel
A reports the results to validate the positive relationship between the Refinitiv MarketPsych cybercrime news
measure and the cyber incidents we use for the hedging performance evaluation. Panel B reports the five and the
long-short (HL) portfolios’ cumulative abnormal returns estimated by the CAPM in five days after information
about cyber incidents was made to the public. Portfolio abnormal return is the average abnormal return of stocks
in each portfolio and then cumulates subject to post-event windows. The cumulative abnormal return in Panel
B is reported as %. Newey-West adjusted t-statistics are reported in parentheses. The sample period is from
01/01/2007 to 12/31/2021 across 112 cyber incidents.

Panel A: Cyber Incidents and Cybercrime News Coverage
CCBt CCBt

Intercept 308.47 59.23
(36.41) (4.90)

Iincident=1 336.68 275.93
(4.31) (4.24)

CCBt−1 0.66
13.36

CCBt−2 -0.1
(-2.57)

CCBt−3 0.05
(1.3)

CCBt−4 0.01
(0.25)

CCBt−5 -0.04
(-1.48)

CCBt−6 0.21
(6.14)

R̄ 0.02 0.5

Panel B: Average Cumulative Abnormal Return Post Cyber Incidents
P1 P2 P3 P4 P5 HL

CARt,t+1 -0.09 0.02 0.09 0.16 0.28 0.37
(-1.27) (0.41) (1.25) (1.59) (1.71) (2.04)

CARt,t+2 -0.19 -0.02 0.08 0.19 0.35 0.53
(-2.19) (-0.27) (0.58) (1.06) (1.29) (1.83)

CARt,t+3 -0.23 -0.01 0.08 0.22 0.31 0.54
(-2.37) (-0.10) (0.61) (1.22) (1.09) (1.82)

CARt,t+4 -0.38 -0.09 0.04 0.18 0.25 0.63
(-3.56) (-0.83) (0.27) (0.95) (0.86) (2.20)

CARt,t+5 -0.43 -0.13 0.01 0.14 0.15 0.57
(-3.89) (-1.11) (0.07) (0.69) (0.50) (1.96)
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Table 10: Cybersecurity Risk 10-K Measure Hedging Portfolio Evaluation

This table presents the performance evaluation of a low-minus-high hedging portfolio constructed by using cy-
bersecurity risk measure by Florackis et al. (2023). We follow the portfolio construction method as stated in
Florackis et al. (2023). The hedging portfolio is to long stocks in P1 with zero cybersecurity risk and short stocks
in P3 with the highest cybersecurity risk exposure across 80 cyber incidents from 2008 to 2019 based on the
data availability of cybersecurity risk measure. The 80 cyber incidents are the first cyber-related crimes in each
month from 2008 to 2019, recorded by CSIS as significant incidents in the US. The table reports the three and the
long-short (LH) portfolios’ cumulative abnormal returns estimated by the CAPM in five days after information
about cyber incidents was made available to the public. Portfolio abnormal return is the average abnormal return
of stocks in each portfolio and then cumulates subject to post-event windows. The cumulative abnormal return
in this table is reported as %. Newey-West adjusted t-statistics are reported in parentheses. The sample period is
from 04/01/2008 to 03/31/2019 across 80 cyber incidents.

P1 P2 P3 LH
CARt,t+1 0.14 0.18 0.08 0.06

(1.75) (2.56) (1.27) (0.91)
CARt,t+2 0.10 0.10 0.01 0.09

(1.09) (1.27) (0.18) (1.41)
CARt,t+3 0.10 0.10 0.01 0.05

(1.03) (1.37) (0.61) (0.69)
CARt,t+4 0.04 0.04 -0.03 0.08

(0.34) (0.42) (-0.36) (0.86)
CARt,t+5 0.00 0.06 -0.02 0.02

(0.02) (0.62) (-0.24) (0.23)
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Table 11: Ex-post Cybercrime Mimicking Value-Weighted Pricing Factor
This table reports the results of the ex-post cybercrime mimicking factor pricing test. First, we estimate the weights
b′ by using equation (5) on a monthly rolling basis. Second, we multiply b′ by the vector of one-month ahead
base asset returns that are the five value-weighted portfolio returns sorted by βCCA from equation (4) to obtain the
cybercrime ex-post pricing factor return from January 1999 to December 2021. The first column is the average
return of the ex-post cybercrime tracking factor. The remaining columns present results based on different pricing
models. αCAPM is eatimated from the CAPM model. α3 is estimated from Fama and French (1993)) three-factor
model; α5 is estimated from Fama and French (2015) five-factor model; α6 is estimated from Fama and French
(2015) five-factor model augmented with the momentum factor; α8 is estimated from Fama and French (2015)
five-factor model augmented with the momentum, short-term and long-term reversal factor; αq is estimated from
Hou et al. (2015) q-factor model. Newey-West adjusted t-statistics are reported in parentheses.

FCCA Monthly Pricing Factor Test
Factor αCAPM α3 α5 α6 α8 αq

Models -0.44 -0.44 -0.46 -0.47 -0.46 -0.45 -0.42
(-3.51) (-3.47) (-3.60) (-3.47) (-3.48) (-3.30) (-3.16)

MKT 0.01 -0.005 -0.005 -0.01 -0.03 RMKT -0.03
(0.23) (-0.12) (-0.12) (-0.23) (-0.60) (-0.54)

SMB 0.09 0.10 0.10 0.06 RME 0.04
(1.81) (1.61) (1.64) (0.99) (0.72)

HML 0.09 0.07 0.07 0.02 RIA 0.07
(1.85) (1.25) (1.06) (0.26) (1.12)

RMW 0.02 0.03 0.06 RROE -0.10
(0.35) (0.41) (1.01) (-1.80)

CMA -0.03 -0.03 -0.09
(-0.34) (-0.30) (-0.92)

UMD -0.014 -0.021
(-0.51) (-0.87)

ST 0.02
(0.50)

LT 0.15
(2.49)

R̄2 -0.003 0.02 0.02 0.01 0.03 0.02
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Table 12: Univariate Portfolios of Stocks Sorted by Google-Search Trend Based
Cybercrime Beta

This table reports univariate portfolio sorting based on the βSV I and βT SV I in the left and right panels, respectively.
First, for each month from December 2007, we form quintile portfolios every month by using NYSE breakpoints,
βSV I is estimated from equation (11), and βT SV I is estimated from equation (7) by replacing TCCA with T SV I,
using the last 12 months daily data. Noted that the T SV I is constructed as the same procedure with TCCA by
using Google Search Trend data. Second, we calculate the value-weighted returns for the next month. The first
column in each panel reports individual stocks’ average Google search-based cybercrime beta and average Google
search-based cybercrime tracking beta in each relative beta quintile. The remaining columns in each panel present
the average excess returns (RET-RF) and risk-adjusted returns (α3,α5,α6, and α8) for the quintile value-weighted
portfolios and the high minus low portfolio in the last row. α3 is estimated from Fama and French (1993)) three-
factor model; α5 is estimated from Fama and French (2015) five-factor model; α6 is estimated from Fama and
French (2015) five-factor model augmented with the momentum factor; α8 is estimated from Fama and French
(2015) five-factor model augmented with the momentum, short-term and long-term reversal factor. Newey-West
adjusted t-statistics are reported in parentheses. The sample period is from 01/01/2007 to 12/31/2021.

SVI Beta TSVI Beta

β SV I Excess Return α3 α5 α6 α8 β T SV I Excess Return α3 α5 α6 α8

Low -0.58 1.14 0.10 0.15 0.15 0.15 -2.55 1.34 0.29 0.37 0.38 0.36

(2.43) (0.92) (1.40) (1.46) (1.40) (2.33) (1.41) (1.99) (2.09) (2.11)

2 -0.16 1.06 0.17 0.11 0.11 0.11 -0.93 1.18 0.26 0.23 0.23 0.23

(2.80) (2.38) (1.55) (1.59) (1.52) (2.92) (2.56) (2.34) (2.50) (2.49)

3 -0.01 0.97 0.10 0.05 0.05 0.04 -0.17 0.92 0.02 -0.00 -0.01 -0.00

(2.79) (1.68) (0.89) (0.87) (0.90) (2.60) (0.19) (-0.02) (-0.01) (-0.02)

4 0.15 0.83 -0.10 -0.10 -0.10 -0.11 0.55 0.89 -0.06 -0.42 -0.03 -0.03

(2.35) (-1.26) (-1.31) (-1.33) (-1.37) (2.51) (-0.51) (-0.26) (-0.27) (-0.24)

High 0.59 0.69 -0.49 -0.37 -0.38 -0.38 1.97 0.57 -0.5 -0.42 -0.42 -0.41

(1.42) (-2.88) (-2.25) (-2.33) (-2.20) (1.38) (-3.01) (-2.39) (-2.55) (-2.38)

High-Low -0.45 -0.59 -0.53 -0.53 -0.52 -0.76 -0.79 -0.79 -0.78 -0.77

(-2.04) (-2.77) (-2.41) (-2.55) (-2.31) (-2.12) (-2.45) (-2.51) (-2.73) (-2.63)
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Appendix

A Variable definition

Buzz: This measure is the sum of all references from the news in the US over 24 hours. Source:

Refinitiv MarketPsych.

Cybercrime: Fraction of total news references and scrutinizing only cybercrime narratives over

24 hours. Source: Refinitiv MarketPsych.

CCB: The measure of news coverage for cybercrime-related narratives and calculated as

BUZZt ×Cybercrimet . Source: Refinitiv MarketPsych.

VIX: Daily closing value of VIX. Source: Wharton Research Data Services-CBOE Indexes.

EPU: Daily news-based Economic Policy Uncertainty Index. Source: website from the study by

Baker et al. (2016)

βCAPM: CAPM beta is estimated by the CAPM model with a one-year daily return rolling

window.

βVIX: Volatility risk beta is estimated by following the study by Ang et al. (2006).

βEPU: EPU uncertainty beta is estimated by augmented CAPM model. Each beta estimation is

based on a year daily return rolling window. Specifically, we estimate the εEPU based on the

method of Brogaard and Detzel (2015). Then, we standardize εEPU in each regression period.

βEPU is the regression coefficient on the standardized εEPU controlling for the market factor in

CAPM.

ME: Market value of equity in fiscal year closing price times the total share of the equity. Source:

Compustat.

Size: Natural log of market value of equity. Source: Compustat.

BM: Book to Market Ratio as defined in Fama and French (1992). We take the natural logarithm

of BM in regressions. Source: Compustat.

ILLIQ: Monthly illiquidity measure as per Amihud (2002). We take the natural logarithm of
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ILLIQ in regressions. Source: CRSP.

OP: Operating Profitability, as defined in Fama and French (2015). Source: Compustat.

I/A: Investment measure is defined as in Fama and French (2015) study. Source: Compustat.

MOM: Momentum Return Measure is defined as the cumulative return from t −11 to the month

t −1 before the last month t. Source: CRSP.

LRET: Return from the last month to capture the short-term reversal effect. Source: CRSP.

Idiosyncratic Volatility (IVOL): The residual standard error from Fama and French (2015) five

factors plus momentum factor pricing model on a daily rolling basis. Each company must have at

least 60 observations to run the time-series regression. Sources: CRSP and Kenneth R. French

Data Library.

Forecast Dispersion (DISP): The standard deviation of analysts’ earnings forecasts in the most

recent month before the quarterly earnings announcement and scaled by the stock price. Source:

Institutional Brokers Estimate System (I/B/E/S).

Accruals: The value is calculated following Sloan (1996) and Pedersen et al. (2021). We use

negated value (low accruals) as the proxy of corporate governance.

G: ESG-based Governance score. Source: Refinitiv Workspace.

Expert: Number of committee members whose committed names, including works with

“risk”(R), “security”(S), “governance”(G), “operation”(O), “information”(I), “technology”(T),

“data”(D) and “cyber”(C). The tested variable is taken from a natural log for reducing skewness.

Source: BoardEx.

Expert%: Ratio of committee members whose committed names, including RSGOITDC

keywords, are divided by the total number of committee members. The tested variable is taken

from a natural log for reducing skewness. Source: BoardEx.

Digital: The value is calculated following the methodology of Chen and Srinivasan (2023) based

on conference call textual data from 2002 to 2021.

QDigital: The quantized Digital is calculated following the methodology of Chen and Srinivasan

(2023). Specifically, we cut Digital into four groups. Firms with a zero value of Digital assign a
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value of 0. Firms with non-zero values of Digital are assigned values of 1,2,3 based on tercile

cutoffs.

PSPC: The firm’s similarity with its product market peers with cybercrime news narratives

reported in the past one-year rolling window is calculated based on the equation (8). The product

similarity measure is from Hoberg and Phillips (2016). Source: Hoberg-Phillips Data Library.

IT Budget: The ratio of a firm’s total IT investment divided by total assets (IT budget/Assets).

Source: HHM and Compustat.

Hardware: The ratio of a firm’s hardware IT spending divided by total assets (IT(hardware)

budget/Assets). Source: HHM and Compustat.

Software: The ratio of a firm’s software IT spending divided by total assets (IT (software)

budget/Assets). Source: HHM and Compustat.

Communication: The ratio of a firm’s communication IT spending divided by total assets (IT

(communication) budget/Assets). Source: HHM and Compustat.

Service: The ratio of a firm’s service IT spending divided by total assets (IT (service)

budget/Assets). Source: HHM and Compustat.

HCCR: A dummy variable is assigned to a value of one to denote months where the average

cybercrime news coverage exceeds this 90-day benchmark.

Intangibility: The ratio of total intangible assets [intan] to total assets [at]. Source: Compustat.

R&D: The ratio of R&D expenditures [xrd] to total assets [at]. We replace the missing value for

xrd with zeros. Source: Compustat.

ROA: The ratio of operating income before depreciation [oibd p] to total assets [at]. Source:

Compustat.

Leverage: Total long-term debt [dltt] + total current liabibilities [dlc] to total assets [at] Source:

Compustat.

Productivity: Total revenue [revt] to total employee [emp] Source: Compustat.

SVI: The number of Google search trends on the keyword ”cybercrime”. Source: Google Search

Trends Website.
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B Cybercrime vs. cybersecurity risk portfolios

Florackis et al. (2023) measure cybersecurity risk using text analysis of firms’ 10-K filings. Al-

though this paper provides compelling evidence for a positive risk premium on firms more exposed

to cybersecurity risk, their measure may be influenced by issues with disclosure. As noted above,

over 50% of companies are assigned cyber risk values of zero in the early years of the Florackis

et al. (2023) sample. This may simply be underreporting as managers may not be aware of the true

extent of exposure to cyber risk. For example, the models of Gao and Liang (2013) and Bai et al.

(2016) begin with the premise that managers are not aware of all dimensions of firm value but that

investors may have more expertise about some of them. Informed trades based on such expertise

may mean that stock prices are more informative about these risks than disclosures.

The second problem is that disclosure is influenced by managers’ choices, even when manda-

tory (Peters and Romi, 2013). The large accounting literature on this subject that points to the

general conclusion that risk disclosure is strategic and subject to biases towards withholding bad

news (Bagnoli and Watts, 2007; Kothari et al., 2009). Guidance issued by the SEC resulted in

abrupt increases in disclosure of cyber risks, suggesting that disclosure had been less than full

before this encouragement was issued. The updated guidance does not appear to have resulted in

complete transparency about cyber risks. Jiang et al. (2024) examine firm disclosures after cyber

breaches. They show that prior breach experiences and market reactions to cyber breaches affect

how firms alter their disclosures, confirming the strategic nature of manager actions.

Our measure trusts in the ability of markets to see through the veil of disclosure, such that

stock prices better reflect true risk exposures. This naturally leads to the empirical question of

whether our measure captures the cyber risk premium differently – or perhaps even better – than

their measure.

We conduct bivariate dependent sorts to compare the performance of the two measures. To

alleviate the issue of too many zero risk measures at the start of their sample, we follow the back-

fill method proposed in their robustness section. We first sort stocks into five portfolios based on

the Florackis et al. (2023) 10-K-based measure. Then, within each portfolio, we form quintile
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portfolios based on βTCCA estimated from equation (7) and report five-factor alphas. Panel A of

Table VII shows that dispersion in βTCCA within 10-K-based portfolios adds information. High

minus low βTCCA portfolio alphas are each large and negative, statistically significant in three of

five cases.

Conversely, sorting first on βTCCA and then on the 10-K-based measure shows no clear pattern.

High minus low portfolio alphas flip the sign and are not statistically significant. We conclude that

variation in βTCCA captures the alpha-relevant information contained in the 10-K-based measure

but not vice versa.
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Table I: Descriptive Statistics

This table presents descriptive statistics for the key variables used in our analysis. Appendix A defines the vari-
ables.

Mean Std P1 P50 P99
βTCCA 0.09 0.78 -1.72 0.03 2.86
BMKT 0.99 0.57 -0.09 0.98 2.53
BVIX 0.05 1.23 -3.18 0.02 3.47
BEPU -0.01 0.23 -0.65 -0.01 0.60
SIZE 6.74 1.84 3.06 6.61 11.56
BM 0.60 0.60 0.02 0.47 2.63
OP -0.10 93.28 -1.34 0.20 1.75
I/A 0.18 1.04 -0.37 0.07 2.23

MOM 0.23 0.89 -0.68 0.10 3.13
LRET 0.02 0.17 -0.32 0.01 0.51
IVOL 0.41 0.27 0.11 0.35 1.29
ILLIQ 0.28 1.86 0.00 0.00 5.34
DISP 0.16 1.37 0.00 0.03 2.00
ROA 0.07 0.22 -0.77 0.10 0.40
R&D 0.05 0.12 0.00 0.00 0.53

Leverage 0.20 0.20 0.00 0.16 0.78
Intangibility 0.16 0.20 0.00 0.06 0.76
Productivity 0.37 0.68 0.00 0.22 3.81

Accural -0.02 0.17 -0.14 -0.04 0.58
G 2.00 0.82 1.0 2.00 3.00

Expert 4.22 3.56 0.00 4.00 16.00
TExpert 16.45 9.50 5.00 14.00 51.00
PSPC 0.08 0.15 0.00 0.02 0.71
Digital 0.44 3.43 0.00 0.00 9.23

QDigital 0.19 0.63 0.00 0.00 3.00
Total IT Budget 174.26 1489.98 0.00 2.68 3043.11

Hardware Budget 14.05 115.58 0.00 0.53 228.74
Software Budget 46.85 420.59 0.00 0.58 764.88

Communication Budget 11.48 98.89 0.00 0.27 210.46
Service Budget 54.65 432.94 0.00 0.50 996.79
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Table II: Portfolio Analysis of Stocks Sorted by βCCA
This table reports portfolio sorting tests for estimated stock cybercrime news beta. The results are based on
univariate portfolio sorting based on the βCCA. First, for each month from December 1998, we form quintile
portfolios every month by using NYSE breakpoints, βCCA is estimated from equation (4), using the last 12 months
daily data. Second, we calculate the value-weighted returns for the next month. The first column in the panel
reports individual stocks’ average cybercrime news beta and average cybercrime tracking beta in each relative
beta quintile. The remaining columns in each panel present the average excess returns (RET-RF) and risk-adjusted
returns (α3,α5,α6, and α8) for the quintile value-weighted portfolios and the high minus low portfolio in the
last row. α3 is estimated from Fama and French (1993)) three-factor model; α5 is estimated from Fama and
French (2015) five-factor model; α6 is estimated from Fama and French (2015) five-factor model augmented
with the momentum factor; α8 is estimated from Fama and French (2015) five-factor model augmented with the
momentum, short-term and long-term reversal factor. Newey-West adjusted t-statistics are reported in parentheses.

βCCA Excess Return α3 α5 α6 α8

Low -0.23 0.94 0.23 0.29 0.29 0.27

(3.06) (2.19) (2.56) (2.56) (2.28)

P2 -0.06 0.77 0.19 0.08 0.08 0.07

(2.90) (2.69) (1.27) (1.23) (1.14)

P3 0.001 0.64 0.04 -0.04 -0.04 -0.04

(2.51) (0.58) (-0.62) (-0.55) (-0.55)

P4 0.06 0.52 -0.09 -0.14 -0.13 -0.14

(1.85) (-1.41 (-1.92) (-1.75) (-1.85)

High 0.23 0.34 -0.41 -0.36 -0.34 -0.35

(0.87) (-3.01) (-2.52) (-2.49) (-2.27)

High-Low -0.60 -0.64 -0.64 -0.63 -0.62

(-2.66) (-3.01) (-2.83) (-2.90) (-2.66)
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Table III: Fama-French-Style Cybercrime Mimicking Factor Pricing Test

This table reports the cybercrime mimicking factor pricing test results. First, we estimate βCCA by using equa-
tion (4) monthly. Second, we follow the factor construction method by Fama and French (1993) to obtain the
cybercrime mimicking factor return from January 1999 to December 2021. The first column is the average re-
turn of the ex-post FF-style cybercrime tracking factor. The remaining columns present results based on different
pricing models. αCAPM is estimated from the CAPM model. The remaining columns present results based on
different pricing models. αCAPM is estimated from the CAPM model. α3 is estimated from Fama and French
(1993)) three-factor model; α5 is estimated from Fama and French (2015) five-factor model; α6 is estimated from
Fama and French (2015) five-factor model augmented with the momentum factor; α8 is estimated from Fama and
French (2015) five-factor model augmented with the momentum, short-term and long-term reversal factor; αq is
estimated from Hou et al. (2015) q-factor model. Newey-West adjusted t-statistics are reported in parentheses.

Factor αCAPM α3 α5 α6 α8 αq
Models -0.37 -0.39 -0.40 -0.38 -0.37 -0.37 -0.34

(-2.81) (-2.98) (-3.02) (-2.77) (-2.83) (-2.65) -(2.63)
MKT 0.03 0.03 0.02 0.01 0.00 RMKT 0.01

(0.75) (0.86) (0.63) (0.17) (-0.09) (0.16)
SMB 0.00 0.00 0.02 0.01 RME -0.06

(-0.07) (0.07) (0.29) (0.16) (-0.93)
HML 0.07 0.09 0.07 0.05 RIA 0.07

(0.95) (1.51) (0.97) (0.73) (0.65)
RMW 0.01 0.02 0.03 RROE -0.12

(0.15) (0.28) (0.36) (-1.51)
CMA -0.08 -0.07 -0.06

(-0.72) (-0.59) (-0.47)
UMD -0.05 -0.04

(-1.03) (-1.04)
ST 0.04

(0.68)
LT 0.01

(0.16)
R̄2 0.00 0.01 0.01 0.01 0.02 0.02
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Table IV: Ex-post SVI Cybercrime Mimicking Value-Weighted Pricing Factor

This table reports the results of the ex-post cybercrime mimicking factor pricing test. First, we estimate the
weights b′ by using equation (5) on a monthly rolling basis. Second, we multiply b′ by the vector of one-month
ahead base asset returns that are the five value-weighted portfolio returns sorted by βSV I from equation (11) to
obtain the Google search-based cybercrime ex-post pricing factor return from January 2008 to December 2021.
The first column is the average return of the ex-post cybercrime tracking factor. The remaining columns present
results based on different pricing models. The remaining columns present results based on different pricing
models. αCAPM is eatimated from the CAPM model. α3 is estimated from Fama and French (1993)) three-factor
model; α5 is estimated from Fama and French (2015) five-factor model; α6 is estimated from Fama and French
(2015) five-factor model augmented with the momentum factor; α8 is estimated from Fama and French (2015)
five-factor model augmented with the momentum, short-term and long-term reversal factor; αq is estimated from
Hou et al. (2015) q-factor model. Newey-West adjusted t-statistics are reported in parentheses.

Factor αCAPM α3 α5 α6 α8 αq
Models -0.21 -0.23 -0.26 -0.25 -0.25 -0.26 -0.26

(-2.39) (-2.41) (-2.93) (-2.95) (-3.03) (-3.00) (-2.96)
MKT 0.02 0.04 0.04 0.05 0.05 RMKT 0.04

(0.62) (1.42) (1.38) (1.75) (1.68) (1.44)
SMB -0.04 -0.05 -0.05 -0.04 RME -0.04

(-1.42) (-1.40) (-1.23) (-0.92) (-1.13)
HML -0.09 -0.06 -0.04 -0.03 RIA -0.08

(-2.40) (-1.64) (-0.95) (-0.52) (-1.78)
RMW -0.02 -0.02 -0.03 RROE 0.06

(-0.34) (-0.30) (-0.56) (1.35)
CMA -0.05 -0.06 -0.04

(-0.89) (-1.14) (-0.77)
UMD 0.04 0.04

(1.66) (1.65)
ST 0.01

(0.28)
LT -0.04

(-0.59)
R̄2 0.00 0.06 0.06 0.07 0.06 0.02
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Table V: Portfolio Analysis of S&P 500 Stocks Sorted by βCCA
This table reports portfolio sorting tests for estimated S&P 500stock cybercrime news beta. The results are
based on univariate portfolio sorting based on the βCCA. First, for each month from December 1998, we form
quintile portfolios every month by using NYSE breakpoints, βCCA is estimated from equation (4), using the last
12 months daily data. Second, we calculate the value-weighted returns for the next month. The first column in
the panel reports individual stocks’ average cybercrime news beta in each relative beta quintile. The remaining
columns in each panel present the average excess returns (RET-RF) and risk-adjusted returns (α3,α5,α6, and α8)
for the quintile value-weighted portfolios and the high minus low portfolio in the last row. α3 is estimated from
Fama and French (1993)) three-factor model; α5 is estimated from Fama and French (2015) five-factor model;
α6 is estimated from Fama and French (2015) five-factor model augmented with the momentum factor; α8 is
estimated from Fama and French (2015) five-factor model augmented with the momentum, short-term and long-
term reversal factor. Newey-West adjusted t-statistics are reported in parentheses.

βCCA Excess Return α3 α5 α6 α8

Low -0.14 0.83 0.19 0.14 0.14 0.13

(2.91) (1.69) (1.38) (1.39) (1.26)

P2 -0.04 0.69 0.17 0.06 0.06 0.06

(2.86) (2.21) (0.79) (0.87) (0.82)

P3 0.001 0.63 0.08 -0.01 -0.00 0.00

(2.51) (0.94) (-0.08) (-0.02) (0.03)

P4 0.05 0.45 -0.12 -0.20 -0.18 -0.20

(1.62) (-1.41) (-2.18) (-2.07) (-2.16)

High 0.15 0.24 -0.41 -0.40 -0.38 -0.38

(0.67) (-3.34) (-3.18) (-3.07) (-2.83)

High-Low -0.59 -0.60 -0.54 -0.52 -0.51

(-3.08) (-3.05) (-2.84) (-2.85) (-2.63)
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Table VI: Portfolio Analysis of S&P 500 Stocks Sorted by βTCCA
This table reports portfolio sorting tests for estimated S&P 500stock cybercrime beta. The results are based on
univariate portfolio sorting based on the βTCCA. First, for each month from December 1998, we form quintile
portfolios every month by using NYSE breakpoints, βTCCA is estimated from equation (7), using the last 12
months daily data. Second, we calculate the value-weighted returns for the next month. The first column in the
panel reports individual stocks’ average cybercrime tracking beta in each relative beta quintile. The remaining
columns in each panel present the average excess returns (RET-RF) and risk-adjusted returns (α3,α5,α6, and α8)
for the quintile value-weighted portfolios and the high minus low portfolio in the last row. α3 is estimated from
Fama and French (1993)) three-factor model; α5 is estimated from Fama and French (2015) five-factor model;
α6 is estimated from Fama and French (2015) five-factor model augmented with the momentum factor; α8 is
estimated from Fama and French (2015) five-factor model augmented with the momentum, short-term and long-
term reversal factor. Newey-West adjusted t-statistics are reported in parentheses.

βTCCA Excess Return α3 α5 α6 α8

Low -0.63 0.99 0.37 0.32 0.32 0.32

(3.55) (2.74) (2.66) (2.67) (2.61)

P2 -0.18 0.62 0.12 -0.10 -0.11 -0.12

(2.54) (1.03) (-0.98) (-1.04) (-1.26)

P3 0.03 0.61 0.09 -0.02 -0.03 -0.04

(2.40) (1.18) (-0.25) (-0.29) (-0.44)

P4 0.26 0.51 -0.07 -0.20 -0.18 -0.19

(1.74) (-0.57) (-1.73) (-1.54) (-1.58)

High 0.78 0.27 -0.45 -0.36 -0.31 -0.29

(0.70) (-2.95) (-2.58) (-2.34) (-2.05)

High-Low -0.72 -0.82 -0.68 -0.63 -0.61

(-2.64) (-3.16) (-2.93) (-2.80) (-2.56)
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Table VII: Bivariate Portfolio Analysis between Cybercrime Beta and
Cybersecurity

This table presents bivariate portfolio sorting results to compare the performance of the two measures, cybercrime
tracking beta (βTCCA) and cybersecurity risk, from 10-K filings by Florackis et al. (2023). First, we follow the
method proposed by Florackis et al. (2023) in their study to backfill the zeros measures for firms that did not
report cyber-related information in 10-K in the early years of the sample. Panel A shows we sort stocks based on
cybersecurity risk as a control variable into quintiles. Then, within each cybersecurity portfolio, we sort stocks
into quintiles based on βTCCA. Panel B shows that we sort stocks based on our cybercrime tracking beta (βTCCA)
as a control variable into quintiles. Then, we sort stocks into quintiles based on cybersecurity within each βTCCA
portfolio. The next month’s value-weighted portfolio return alphas (α5 is estimated from Fama and French (2015)
five-factor model) are reported in the left sub-panel, and robust t-statistics for 25 portfolios are reported in the
right sub-panel. The portfolio sample period is from March 2008 to March 2019 to align the sample periods used
in Florackis et al. (2023).

Panel A: Control for Cybersecurity Risk

α5 αt

βTCCA 1 2 3 4 5 1 2 3 4 5

Low 0.26 0.30 0.32 0.55 0.29 0.75 1.20 1.23 2.23 1.27

P2 -0.13 0.14 0.32 0.35 0.46 -0.52 0.95 2.31 1.69 2.10

P3 -0.08 0.27 0.18 -0.24 0.02 -0.51 1.44 1.16 -1.10 0.08

P4 -0.40 -0.06 0.38 0.22 -0.30 -1.71 -0.30 1.83 1.44 -1.90

High -0.25 -0.68 -0.71 -0.44 -0.04 -0.68 -2.26 -2.51 -1.61 -0.17

HL -0.51 -0.98 -1.02 -0.99 -0.32 -0.83 -2.06 -2.03 -3.07 -1.22

Panel B: Control for βTCCA

α5 αt

Cybersecurity 1 2 3 4 5 1 2 3 4 5

Low 0.26 0.22 -0.21 -0.04 -0.54 0.84 0.77 -0.77 -0.19 -1.25

P2 0.43 0.02 -0.01 0.01 -0.33 1.47 0.10 -0.05 0.06 -1.07

P3 0.30 0.21 0.15 0.41 -0.59 1.28 1.34 0.76 1.85 -1.96

P4 0.26 -0.05 -0.11 0.23 -0.24 1.08 -0.19 -0.54 1.42 -0.78

High 0.23 0.63 -0.11 -0.24 -0.24 0.93 2.78 -0.54 -1.69 -0.93

HL -0.03 0.41 0.10 -0.20 0.29 -0.10 1.86 0.30 -0.89 0.78
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